Matching Items (33)
Filtering by

Clear all filters

158887-Thumbnail Image.png
Description
Gas Dynamic Virtual Nozzles (GDVN) produce microscopic flow-focused liquid jets and are widely used for sample delivery in serial femtosecond crystallography (SFX) and time-resolved solution scattering. Recently, 2-photon polymerization (2PP) made it possible to produce 3D-printed GDVNs with submicron printing resolution. Comparing with hand- fabricated nozzles, reproducibility, and less developing

Gas Dynamic Virtual Nozzles (GDVN) produce microscopic flow-focused liquid jets and are widely used for sample delivery in serial femtosecond crystallography (SFX) and time-resolved solution scattering. Recently, 2-photon polymerization (2PP) made it possible to produce 3D-printed GDVNs with submicron printing resolution. Comparing with hand- fabricated nozzles, reproducibility, and less developing effort, and similarity of the performance of different 3D printed nozzles are among the advantages of using 3D printing techniques to develop GDVN’s. Submicron printing resolution also makes it possible to easily improve GDVN performance by optimizing the design of nozzles. In this study, 3D printed nozzles were developed to achieve low liquid and gas flow rates and high liquid jet velocities. A double-pulsed nanosecond laser imaging system was used to perform Particle Tracking Velocimetry (PTV) in order to determine jet velocities and assess jet stability/reproducibility. The testing results of pure water jets focused with He sheath gas showed that some designs can easily achieve stable liquid jets with velocities of more than 80 m/s, with pure water flowing at 3 microliters/min, and helium sheath gas flowing at less than 5 mg/min respectively. A numerical simulation pipeline was also used to characterize the performance of different 3D printed GDVNs. The results highlight the potential of making reproducible GDVNs with minimum fabrication effort, that can meet the requirements of present and future SFX and time-resolved solution scattering research.
ContributorsNazari, Reza (Author) / Adrian, Ronald (Thesis advisor) / Kirian, Richard (Thesis advisor) / Herrmann, Marcus (Committee member) / Phelan, Patrick (Committee member) / Weierstall, Uwe (Committee member) / Arizona State University (Publisher)
Created2020
154376-Thumbnail Image.png
Description
The muon problem of flavor physics presents a rich opportunity to study beyond standard model physics. The as yet undiscovered bound state (μ+μ-), called true muonium, presents a unique opportunity to investigate the muon problem. The near-future experimental searches for true muonium will produce it relativistically, preventing the easy application

The muon problem of flavor physics presents a rich opportunity to study beyond standard model physics. The as yet undiscovered bound state (μ+μ-), called true muonium, presents a unique opportunity to investigate the muon problem. The near-future experimental searches for true muonium will produce it relativistically, preventing the easy application of non-relativistic quantum mechanics. In this thesis, quantum field theory methods based on light-front quantization are used to solve an effective Hamiltonian for true muonium in the Fock space of |μ+μ-> , |μ+μ-γ> , |e+e->, |e+e-γ>, |τ+τ-> , and |τ+τ-γ> . To facilitate these calculations a new parallel code, True Muonium Solver With Front-Form Techniques (TMSWIFT), has been developed. Using this code, numerical results for the wave functions, energy levels, and decay constants of true muonium have been obtained for a range of coupling constants α. Work is also presented for deriving the effective interaction arising from the |γγ sector’s inclusion into the model.
ContributorsLamm, Henry (Author) / Lebed, Richard F (Thesis advisor) / Belitsky, Andrei (Committee member) / Alarcon, Ricardo (Committee member) / Easson, Damien (Committee member) / Arizona State University (Publisher)
Created2016
154380-Thumbnail Image.png
Description
In brain imaging study, 3D surface-based algorithms may provide more advantages over volume-based methods, due to their sub-voxel accuracy to represent subtle subregional changes and solid mathematical foundations on which global shape analyses can be achieved on complicated topological structures, such as the convoluted cortical surfaces. On the other hand,

In brain imaging study, 3D surface-based algorithms may provide more advantages over volume-based methods, due to their sub-voxel accuracy to represent subtle subregional changes and solid mathematical foundations on which global shape analyses can be achieved on complicated topological structures, such as the convoluted cortical surfaces. On the other hand, given the enormous amount of data being generated daily, it is still challenging to develop effective and efficient surface-based methods to analyze brain shape morphometry. There are two major problems in surface-based shape analysis research: correspondence and similarity. This dissertation covers both topics by proposing novel surface registration and indexing algorithms based on conformal geometry for brain morphometry analysis.

First, I propose a surface fluid registration system, which extends the traditional image fluid registration to surfaces. With surface conformal parameterization, the complexity of the proposed registration formula has been greatly reduced, compared to prior methods. Inverse consistency is also incorporated to drive a symmetric correspondence between surfaces. After registration, the multivariate tensor-based morphometry (mTBM) is computed to measure local shape deformations. The algorithm was applied to study hippocampal atrophy associated with Alzheimer's disease (AD).

Next, I propose a ventricular surface registration algorithm based on hyperbolic Ricci flow, which computes a global conformal parameterization for each ventricular surface without introducing any singularity. Furthermore, in the parameter space, unique hyperbolic geodesic curves are introduced to guide consistent correspondences across subjects, a technique called geodesic curve lifting. Tensor-based morphometry (TBM) statistic is computed from the registration to measure shape changes. This algorithm was applied to study ventricular enlargement in mild cognitive impatient (MCI) converters.

Finally, a new shape index, the hyperbolic Wasserstein distance, is introduced. This algorithm computes the Wasserstein distance between general topological surfaces as a shape similarity measure of different surfaces. It is based on hyperbolic Ricci flow, hyperbolic harmonic map, and optimal mass transportation map, which is extended to hyperbolic space. This method fills a gap in the Wasserstein distance study, where prior work only dealt with images or genus-0 closed surfaces. The algorithm was applied in an AD vs. control cortical shape classification study and achieved promising accuracy rate.
ContributorsShi, Jie, Ph.D (Author) / Wang, Yalin (Thesis advisor) / Caselli, Richard (Committee member) / Li, Baoxin (Committee member) / Xue, Guoliang (Committee member) / Arizona State University (Publisher)
Created2016