Matching Items (18)
Filtering by

Clear all filters

168698-Thumbnail Image.png
Description
Soft continuum robots with the ability to bend, twist, elongate, and shorten, similar to octopus arms, have many potential applications, such as dexterous manipulation and navigation through unstructured, dynamic environments. Novel soft materials such as smart hydrogels, which change volume and other properties in response to stimuli such as temperature,

Soft continuum robots with the ability to bend, twist, elongate, and shorten, similar to octopus arms, have many potential applications, such as dexterous manipulation and navigation through unstructured, dynamic environments. Novel soft materials such as smart hydrogels, which change volume and other properties in response to stimuli such as temperature, pH, and chemicals, can potentially be used to construct soft robots that achieve self-regulated adaptive reconfiguration through on-demand dynamic control of local properties. However, the design of controllers for soft continuum robots is challenging due to their high-dimensional configuration space and the complexity of modeling soft actuator dynamics. To address these challenges, this dissertation presents two different model-based control approaches for robots with distributed soft actuators and sensors and validates the approaches in simulations and physical experiments. It is demonstrated that by choosing an appropriate dynamical model and designing a decentralized controller based on this model, such robots can be controlled to achieve diverse types of complex configurations. The first approach consists of approximating the dynamics of the system, including its actuators, as a linear state-space model in order to apply optimal robust control techniques such as H∞ state-feedback and H∞ output-feedback methods. These techniques are designed to utilize the decentralized control structure of the robot and its distributed sensing and actuation to achieve vibration control and trajectory tracking. The approach is validated in simulation on an Euler-Bernoulli dynamic model of a hydrogel based cantilevered robotic arm and in experiments with a hydrogel-actuated miniature 2-DOF manipulator. The second approach is developed for soft continuum robots with dynamics that can be modeled using Cosserat rod theory. An inverse dynamics control approach is implemented on the Cosserat model of the robot for tracking configurations that include bending, torsion, shear, and extension deformations. The decentralized controller structure facilitates its implementation on robot arms composed of independently-controllable segments that have local sensing and actuation. This approach is validated on simulated 3D robot arms and on an actual silicone robot arm with distributed pneumatic actuation, for which the inverse dynamics problem is solved in simulation and the computed control outputs are applied to the robot in real-time.
ContributorsDoroudchi, Azadeh (Author) / Berman, Spring (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Si, Jennie (Committee member) / Marvi, Hamid (Committee member) / Arizona State University (Publisher)
Created2022
189282-Thumbnail Image.png
Description
Seed awns (Erodium and Pelargonium) bury themselves into ground for germination usinghygroscopic coiling and uncoilingmovements. Similarly,wormlizards (Amphisbaenia) create tunnels for habitation by oscillating their heads along the long axis of the trunks. Inspired by these burrowing strategies, this research aims to understand these mechanisms from a soil mechanics perspective, investigate the factors influencing

Seed awns (Erodium and Pelargonium) bury themselves into ground for germination usinghygroscopic coiling and uncoilingmovements. Similarly,wormlizards (Amphisbaenia) create tunnels for habitation by oscillating their heads along the long axis of the trunks. Inspired by these burrowing strategies, this research aims to understand these mechanisms from a soil mechanics perspective, investigate the factors influencing penetration resistance, and develop a self-burrowing technology for subterranean explorations. The rotational movements of seed awns, specifically their coiling and uncoiling movements, were initially examined using the Discrete Element Method (DEM) under shallow and dry conditions. The findings suggest that rotation reduces penetration resistance by decreasing penetrator-particle contact number and the force exerted, and by shifting the contact force away from vertical direction. The effects of rotation were illustrated through the force chain network, displacement field, and particle trajectories, supporting the "force chain breakage" hypothesis and challenging the assumptions of previous analytical models. The factors reducing penetration resistance were subsequently examined, both numerically and experimentally. The experimental results link the reduction of horizontal penetration resistance to embedment depth and penetrator geometry. Notably, both numerical and experimental results confirm that the reduction of penetration resistance is determined by the relative slip velocity, not by the absolute values. The reduction initially spikes sharply with the relative slip velocity, then increases at a slower rate, leveling off at higher relative slip velocities. Additional findings revealed a minimal impact of relative density, particle shape, and inertial number on penetration resistance reduction. Conversely, interface friction angle appeared to increase the reduction, while penetrator roundness and confining pressure decreased it. The investigation also extended to the effect of rotational modes on the reduction of penetration resistance. Reductions between cone-continuous rotation (CCR) and cone-oscillatory rotation (COR) cases were i comparable. However, whole-body-continuous rotation (WCR) yielded a higher reduction under the same relative slip velocities. Interestingly, the amplitude of oscillation movement demonstrated a negligible effect on the reduction. Lastly, a self-burrowing soft robot was constructed based on these insights. Preliminary findings indicate that the robot can move horizontally, leveraging a combination of extensioncontraction and rotational movements.
ContributorsTang, Yong (Author) / Tao, Junliang (Thesis advisor) / Kavazanjian, Edward (Committee member) / Marvi, Hamid (Committee member) / Arizona State University (Publisher)
Created2023
189365-Thumbnail Image.png
Description
While wearable soft robots have successfully addressed many inherent design limitations faced by wearable rigid robots, they possess a unique set of challenges due to their soft and compliant nature. Some of these challenges are present in the sensing, modeling, control and evaluation of wearable soft robots. Machine learning algorithms

While wearable soft robots have successfully addressed many inherent design limitations faced by wearable rigid robots, they possess a unique set of challenges due to their soft and compliant nature. Some of these challenges are present in the sensing, modeling, control and evaluation of wearable soft robots. Machine learning algorithms have shown promising results for sensor fusion with wearable robots, however, they require extensive data to train models for different users and experimental conditions. Modeling soft sensors and actuators require characterizing non-linearity and hysteresis, which complicates deriving an analytical model. Experimental characterization can capture the characteristics of non-linearity and hysteresis but requires developing a synthesized model for real-time control. Controllers for wearable soft robots must be robust to compensate for unknown disturbances that arise from the soft robot and its interaction with the user. Since developing dynamic models for soft robots is complex, inaccuracies that arise from the unmodeled dynamics lead to significant disturbances that the controller needs to compensate for. In addition, obtaining a physical model of the human-robot interaction is complex due to unknown human dynamics during walking. Finally, the performance of soft robots for wearable applications requires extensive experimental evaluation to analyze the benefits for the user. To address these challenges, this dissertation focuses on the sensing, modeling, control and evaluation of soft robots for wearable applications. A model-based sensor fusion algorithm is proposed to improve the estimation of human joint kinematics, with a soft flexible robot that requires compact and lightweight sensors. To overcome limitations with rigid sensors, an inflatable soft haptic sensor is developed to enable gait sensing and haptic feedback. Through experimental characterization, a mathematical model is derived to quantify the user's ground reaction forces and the delivered haptic force. Lastly, the performance of a wearable soft exosuit in assisting human users during lifting tasks is evaluated, and the benefits obtained from the soft robot assistance are analyzed.
ContributorsQuiñones Yumbla, Emiliano (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamid (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2023
168479-Thumbnail Image.png
Description
This dissertation presents a comprehensive study of modeling and control issues associated with nonholonomic differential drive mobile robots. The first part of dissertation focuses on modeling using Lagrangian mechanics. The dynamics is modeled as a two-input two-output (TITO) nonlinear model. Motor dynamics are also modeled. Trade studies are conducted to

This dissertation presents a comprehensive study of modeling and control issues associated with nonholonomic differential drive mobile robots. The first part of dissertation focuses on modeling using Lagrangian mechanics. The dynamics is modeled as a two-input two-output (TITO) nonlinear model. Motor dynamics are also modeled. Trade studies are conducted to shed light on critical vehicle design parameters, and how they impact static properties, dynamic properties, directional stability, coupling and overall vehicle design. An aspect ratio based dynamic decoupling condition is also presented. The second part of dissertation addresses design of linear time-invariant (LTI), multi-input multi-ouput (MIMO) fixed-structure H∞ controllers for the inner-loop velocity (v, ω) tracking system of the robot, motivated by a practical desire to design classically structured robust controllers. The fixed-structure H∞-optimal controllers are designed using Generalized Mixed Sensitivity(GMS) methodology to systematically shape properties at distinct loop breaking points. The H∞-control problem is solved using nonsmooth optimization techniques to compute locally optimal solutions. Matlab’s Robust Control toolbox (Hinfstruct and Systune) is used to solve the nonsmooth optimization. The dissertation also addresses the design of fixed-structure MIMO gain-scheduled H∞ controllers via GMS methodology. Trade-off studies are conducted to address the effect of vehicle design parameters on frequency and time domain properties of the inner-loop control system of mobile robot. The third part of dissertation focuses on the design of outer-loop position (x, y, θ) control system of mobile robot using real-time model predictive control (MPC) algorithms. Both linear time-varying (LTV) MPC and nonlinear MPC algorithms are discussed.The outer-loop performance of mobile robot is studied for two applications - 1) single robot trajectory tracking and multi-robot coordination in presence of obstacles, 2) maximum progress maneuvering on racetrack. The dissertation specifically addresses the impact of variation of c.g. position w.r.t. wheel-axle on directional maneuverability, peak control effort required to perform aggressive maneuvers, and overall position control performance. Detailed control relevant performance trade-offs associated with outer-loop position control are demonstrated through simulations in discrete time. Optimizations packages CPLEX(convex-QP in LTV-MPC) and ACADO(NLP in nonlinear-MPC) are used to solve the OCP in real time. All simulations are performed on Robot Operating System (ROS).
ContributorsMondal, Kaustav (Author) / Rodriguez, Armando A (Thesis advisor) / Berman, Spring M (Committee member) / Si, Jenni (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2021
168460-Thumbnail Image.png
Description
In this dissertation, new data-driven techniques are developed to solve three problems related to generating predictive models of the immune system. These problems and their solutions are summarized as follows. The first problem is that, while cellular characteristics can be measured using flow cytometry, immune system cells are often

In this dissertation, new data-driven techniques are developed to solve three problems related to generating predictive models of the immune system. These problems and their solutions are summarized as follows. The first problem is that, while cellular characteristics can be measured using flow cytometry, immune system cells are often analyzed only after they are sorted into groups by those characteristics. In Chapter 3 a method of analyzing the cellular characteristics of the immune system cells by generating Probability Density Functions (PDFs) to model the flow cytometry data is proposed. To generate a PDF to model the distribution of immune cell characteristics a new class of random variable called Sliced-Distributions (SDs) is developed. It is shown that the SDs can outperform other state-of-the-art methods on a set of benchmarks and can be used to differentiate between immune cells taken from healthy patients and those with Rheumatoid Arthritis. The second problem is that while immune system cells can be broken into different subpopulations, it is unclear which subpopulations are most significant. In Chapter 4 a new machine learning algorithm is formulated and used to identify subpopulations that can best predict disease severity or the populations of other immune cells. The proposed machine learning algorithm performs well when compared to other state-of-the-art methods and is applied to an immunological dataset to identify disease-relevant subpopulations of immune cells denoted immune states. Finally, while immunotherapies have been effectively used to treat cancer, selecting an optimal drug dose and period of treatment administration is still an open problem. In Chapter 5 a method to estimate Lyapunov functions of a system with unknown dynamics is proposed. This method is applied to generate a semialgebraic set containing immunotherapy doses and period of treatment that is predicted to eliminate a patient's tumor. The problem of selecting an optimal pulsed immunotherapy treatment from this semialgebraic set is formulated as a Global Polynomial Optimization (GPO) problem. In Chapter 6 a new method to solve GPO problems is proposed and optimal pulsed immunotherapy treatments are identified for this system.
ContributorsColbert, Brendon (Author) / Peet, Matthew M (Thesis advisor) / Acharya, Abhinav P (Committee member) / Berman, Spring M (Committee member) / Crespo, Luis G (Committee member) / Yong, Sze Z (Committee member) / Arizona State University (Publisher)
Created2021
168583-Thumbnail Image.png
Description
Technological progress in robot sensing, design, and fabrication, and the availability of open source software frameworks such as the Robot Operating System (ROS), are advancing the applications of swarm robotics from toy problems to real-world tasks such as surveillance, precision agriculture, search-and-rescue, and infrastructure inspection. These applications will require the

Technological progress in robot sensing, design, and fabrication, and the availability of open source software frameworks such as the Robot Operating System (ROS), are advancing the applications of swarm robotics from toy problems to real-world tasks such as surveillance, precision agriculture, search-and-rescue, and infrastructure inspection. These applications will require the development of robot controllers and system architectures that scale well with the number of robots and that are robust to robot errors and failures. To achieve this, one approach is to design decentralized robot control policies that require only local sensing and local, ad-hoc communication. In particular, stochastic control policies can be designed that are agnostic to individual robot identities and do not require a priori information about the environment or sophisticated computation, sensing, navigation, or communication capabilities. This dissertation presents novel swarm control strategies with these properties for detecting and mapping static targets, which represent features of interest, in an unknown, bounded, obstacle-free environment. The robots move on a finite spatial grid according to the time-homogeneous transition probabilities of a Discrete-Time Discrete-State (DTDS) Markov chain model, and they exchange information with other robots within their communication range using a consensus (agreement) protocol. This dissertation extend theoretical guarantees on multi-robot consensus over fixed and time-varying communication networks with known connectivity properties to consensus over the networks that have Markovian switching dynamics and no presumed connectivity. This dissertation develops such swarm consensus strategies for detecting a single feature in the environment, tracking multiple features, and reconstructing a discrete distribution of features modeled as an occupancy grid map. The proposed consensus approaches are validated in numerical simulations and in 3D physics-based simulations of quadrotors in Gazebo. The scalability of the proposed approaches is examined through extensive numerical simulation studies over different swarm populations and environment sizes.
ContributorsShirsat, Aniket (Author) / Berman, Spring (Thesis advisor) / Lee, Hyunglae (Committee member) / Marvi, Hamid (Committee member) / Saripalli, Srikanth (Committee member) / Gharavi, Lance (Committee member) / Arizona State University (Publisher)
Created2022
162002-Thumbnail Image.png
Description
Unmanned aerial vehicles (UAVs) have reshaped the world of aviation. With the emergence of different types of UAVs, a multitude of mission critical applications, e.g., aerial photography, package delivery, grasping and manipulation, aerial reconnaissance and surveillance have been accomplished successfully. All of the aforementioned applications require the UAVs to be

Unmanned aerial vehicles (UAVs) have reshaped the world of aviation. With the emergence of different types of UAVs, a multitude of mission critical applications, e.g., aerial photography, package delivery, grasping and manipulation, aerial reconnaissance and surveillance have been accomplished successfully. All of the aforementioned applications require the UAVs to be robust to external disturbances and safe while flying in cluttered environments and these factors are of paramount importance for task completion. In the first phase, this dissertation starts by presenting the synthesis and experimental validation of real-time low-level estimation and robust attitude and position controllers for multirotors. For the task of reliable position estimation, a hybrid low-pass de-trending filter is proposed for attenuating noise and drift in the velocity and position estimates respectively. Subsequently, a disturbance observer (DOB) approach with online Q-filter tuning is proposed for disturbance rejection and precise position control. Finally, a non-linear disturbance observer (NDOB) approach, along with a parameter optimization framework, is proposed for robust attitude control of multirotors. Multiple simulation and experimental flight tests are performed to demonstrate the efficacy of the proposed algorithms. Aerial grasping and collection is a type of mission-critical task which requires vision based sensing and robust control algorithms for successful task completion. In the second phase, this dissertation initially explores different object grasping approaches utilizing soft and rigid graspers. Additionally, vision based control paradigms are developed for object grasping and collection applications, specifically from water surfaces. Autonomous object collection from water surfaces presents a multitude of challenges: i) object drift due to propeller outwash, ii) reflection and glare from water surfaces makes object detection extremely challenging and iii) lack of reliable height sensors above water surface (for autonomous landing on water). Finally, a first of its kind aerial manipulation system, with an integrated net system and a robust vision based control structure, is proposed for floating object collection from water surfaces. Objects of different shapes and sizes are collected, through multiple experimental flight tests, with a success rate of 91.6%. To the best of the author's knowledge, this is the first work demonstrating autonomous object collection from water surfaces.
ContributorsMishra, Shatadal (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring M (Committee member) / Sugar, Thomas G (Committee member) / Arizona State University (Publisher)
Created2021
191009-Thumbnail Image.png
Description
Walking and mobility are essential aspects of our daily lives, enabling us to engage in various activities. Gait disorders and impaired mobility are widespread challenges faced by older adults and people with neurological injuries, as these conditions can significantly impact their quality of life, leading to a loss of independence

Walking and mobility are essential aspects of our daily lives, enabling us to engage in various activities. Gait disorders and impaired mobility are widespread challenges faced by older adults and people with neurological injuries, as these conditions can significantly impact their quality of life, leading to a loss of independence and an increased risk of mortality. In response to these challenges, rehabilitation, and assistive robotics have emerged as promising alternatives to conventional gait therapy, offering potential solutions that are less labor-intensive and costly. Despite numerous advances in wearable lower-limb robotics, their current applicability remains confined to laboratory settings. To expand their utility to broader gait impairments and daily living conditions, there is a pressing need for more intelligent robot controllers. In this dissertation, these challenges are tackled from two perspectives: First, to improve the robot's understanding of human motion and intentions which is crucial for assistive robot control, a robust human locomotion estimation technique is presented, focusing on measuring trunk motion. Employing an invariant extended Kalman filtering method that takes sensor misplacement into account, improved convergence properties over the existing methods for different locomotion modes are shown. Secondly, to enhance safe and effective robot-aided gait training, this dissertation proposes to directly learn from physical therapists' demonstrations of manual gait assistance in post-stroke rehabilitation. Lower-limb kinematics of patients and assistive force applied by therapists to the patient's leg are measured using a wearable sensing system which includes a custom-made force sensing array. The collected data is then used to characterize a therapist's strategies. Preliminary analysis indicates that knee extension and weight-shifting play pivotal roles in shaping a therapist's assistance strategies, which are then incorporated into a virtual impedance model that effectively captures high-level therapist behaviors throughout a complete training session. Furthermore, to introduce safety constraints in the design of such controllers, a safety-critical learning framework is explored through theoretical analysis and simulations. A safety filter incorporating an online iterative learning component is introduced to bring robust safety guarantees for gait robotic assistance and training, addressing challenges such as stochasticity and the absence of a known prior dynamic model.
ContributorsRezayat Sorkhabadi, Seyed Mostafa (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamid (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2023
187626-Thumbnail Image.png
Description
National Airspace Systems (NAS) are complex cyber-physical systems that require swift air traffic management (ATM) to ensure flight safety and efficiency. With the surging demand for air travel and the increasing intricacy of aviation systems, the need for advanced technologies to support air traffic management and air traffic control (ATC)

National Airspace Systems (NAS) are complex cyber-physical systems that require swift air traffic management (ATM) to ensure flight safety and efficiency. With the surging demand for air travel and the increasing intricacy of aviation systems, the need for advanced technologies to support air traffic management and air traffic control (ATC) service has become more crucial than ever. Data-driven models or artificial intelligence (AI) have been conceptually investigated by various parties and shown immense potential, especially when provided with a vast volume of real-world data. These data include traffic information, weather contours, operational reports, terrain information, flight procedures, and aviation regulations. Data-driven models learn from historical experiences and observations and provide expeditious recommendations and decision support for various operation tasks, directly contributing to the digital transformation in aviation. This dissertation reports several research studies covering different aspects of air traffic management and ATC service utilizing data-driven modeling, which are validated using real-world big data (flight tracks, flight events, convective weather, workload probes). These studies encompass a range of topics, including trajectory recommendations, weather studies, landing operations, and aviation human factors. Specifically, the topics explored are (i) trajectory recommendations under weather conditions, which examine the impact of convective weather on last on-file flight plans and provide calibrated trajectories based on convective weather; (ii) multi-aircraft trajectory predictions, which study the intention of multiple mid-air aircraft in the near-terminal airspace and provide trajectory predictions; (iii) flight scheduling operations, which involve probabilistic machine learning-enhanced optimization algorithms for robust and efficient aircraft landing sequencing; (iv) aviation human factors, which predict air traffic controller workload level from flight traffic data with conformalized graph neural network. The uncertainties associated with these studies are given special attention and addressed through Bayesian/probabilistic machine learning. Finally, discussions on high-level AI-enabled ATM research directions are provided, hoping to extend the proposed studies in the future. This dissertation demonstrates that data-driven modeling has great potential for aviation digital twins, revolutionizing the aviation decision-making process and enhancing the safety and efficiency of ATM. Moreover, these research directions are not merely add-ons to existing aviation practices but also contribute to the future of transportation, particularly in the development of autonomous systems.
ContributorsPang, Yutian (Author) / Liu, Yongming (Thesis advisor) / Yan, Hao (Committee member) / Zhuang, Houlong (Committee member) / Marvi, Hamid (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2023
191489-Thumbnail Image.png
Description
This dissertation discusses continuous-time reinforcement learning (CT-RL) for control of affine nonlinear systems. Continuous-time nonlinear optimal control problems hold great promise in real-world applications. After decades of development, reinforcement learning (RL) has achieved some of the greatest successes as a general nonlinear control design method. Yet as RL control has

This dissertation discusses continuous-time reinforcement learning (CT-RL) for control of affine nonlinear systems. Continuous-time nonlinear optimal control problems hold great promise in real-world applications. After decades of development, reinforcement learning (RL) has achieved some of the greatest successes as a general nonlinear control design method. Yet as RL control has developed, CT-RL results have greatly lagged their discrete-time RL (DT-RL) counterparts, especially in regards to real-world applications. Current CT-RL algorithms generally fall into two classes: adaptive dynamic programming (ADP), and actor-critic deep RL (DRL). The first school of ADP methods features elegant theoretical results stemming from adaptive and optimal control. Yet, they have not been shown effectively synthesizing meaningful controllers. The second school of DRL has shown impressive learning solutions, yet theoretical guarantees are still to be developed. A substantive analysis uncovering the quantitative causes of the fundamental gap between CT and DT remains to be conducted. Thus, this work develops a first-of-its kind quantitative evaluation framework to diagnose the performance limitations of the leading CT-RL methods. This dissertation also introduces a suite of new CT-RL algorithms which offers both theoretical and synthesis guarantees. The proposed design approach relies on three important factors. First, for physical systems that feature physically-motivated dynamical partitions into distinct loops, the proposed decentralization method breaks the optimal control problem into smaller subproblems. Second, the work introduces a new excitation framework to improve persistence of excitation (PE) and numerical conditioning via classical input/output insights. Third, the method scales the learning problem via design-motivated invertible transformations of the system state variables in order to modulate the algorithm learning regression for further increases in numerical stability. This dissertation introduces a suite of (decentralized) excitable integral reinforcement learning (EIRL) algorithms implementing these paradigms. It rigorously proves convergence, optimality, and closed-loop stability guarantees of the proposed methods, which are demonstrated in comprehensive comparative studies with the leading methods in ADP on a significant application problem of controlling an unstable, nonminimum phase hypersonic vehicle (HSV). It also conducts comprehensive comparative studies with the leading DRL methods on three state-of-the-art (SOTA) environments, revealing new performance/design insights.
ContributorsWallace, Brent Abraham (Author) / Si, Jennie (Thesis advisor) / Berman, Spring M (Committee member) / Bertsekas, Dimitri P (Committee member) / Tsakalis, Konstantinos S (Committee member) / Arizona State University (Publisher)
Created2024