Matching Items (31)
Filtering by

Clear all filters

161595-Thumbnail Image.png
Description
With the substantial development of intelligent robots, human-robot interaction (HRI) has become ubiquitous in applications such as collaborative manufacturing, surgical robotic operations, and autonomous driving. In all these applications, a human behavior model, which can provide predictions of human actions, is a helpful reference that helps robots to achieve intelligent

With the substantial development of intelligent robots, human-robot interaction (HRI) has become ubiquitous in applications such as collaborative manufacturing, surgical robotic operations, and autonomous driving. In all these applications, a human behavior model, which can provide predictions of human actions, is a helpful reference that helps robots to achieve intelligent interaction with humans. The requirement elicits an essential problem of how to properly model human behavior, especially when individuals are interacting or cooperating with each other. The major objective of this thesis is to utilize the human intention decoding method to help robots enhance their performance while interacting with humans. Preliminary work on integrating human intention estimation with an HRI scenario is shown to demonstrate the benefit. In order to achieve this goal, the research topic is divided into three phases. First, a novel method of an online measure of the human's reliance on the robot, which can be estimated through the intention decoding process from human actions,is described. An experiment that requires human participants to complete an object-moving task with a robot manipulator was conducted under different conditions of distractions. A relationship is discovered between human intention and trust while participants performed a familiar task with no distraction. This finding suggests a relationship between the psychological construct of trust and joint physical coordination, which bridges the human's action to its mental states. Then, a novel human collaborative dynamic model is introduced based on game theory and bounded rationality, which is a novel method to describe human dyadic behavior with the aforementioned theories. The mutual intention decoding process was also considered to inform this model. Through this model, the connection between the mental states of the individuals to their cooperative actions is indicated. A haptic interface is developed with a virtual environment and the experiments are conducted with 30 human subjects. The result suggests the existence of mutual intention decoding during the human dyadic cooperative behaviors. Last, the empirical results show that allowing agents to have empathy in inference, which lets the agents understand that others might have a false understanding of their intentions, can help to achieve correct intention inference. It has been verified that knowledge about vehicle dynamics was also important to correctly infer intentions. A new courteous policy is proposed that bounded the courteous motion using its inferred set of equilibrium motions. A simulation, which is set to reproduce an intersection passing case between an autonomous car and a human driving car, is conducted to demonstrate the benefit of the novel courteous control policy.
ContributorsWang, Yiwei (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Ren, Yi (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2021
161597-Thumbnail Image.png
Description
This work presents the design, modeling, analysis, and experimental characterization and testing of soft wearable robotics for lower limb rehabilitation for the ankle and hip. The Soft Robotic Ankle-Foot Orthosis (SR-AFO) is a wearable soft robot designed using multiple pneumatically-powered soft actuators to assist the ankle in multiple degrees-of-freedom during

This work presents the design, modeling, analysis, and experimental characterization and testing of soft wearable robotics for lower limb rehabilitation for the ankle and hip. The Soft Robotic Ankle-Foot Orthosis (SR-AFO) is a wearable soft robot designed using multiple pneumatically-powered soft actuators to assist the ankle in multiple degrees-of-freedom during standing and walking tasks. The flat fabric pneumatic artificial muscle (ff-PAM) contracts upon pressurization and assists ankle plantarflexion in the sagittal plane. The Multi-material Actuator for Variable Stiffness (MAVS) aids in supporting ankle inversion/eversion in the frontal plane. Analytical models of the ff-PAM and MAVS were created to understand how the changing of the design parameters affects tensile force generation and stiffness support, respectively. The models were validated by both finite element analysis and experimental characterization using a universal testing machine. A set of human experiments were performed with healthy participants: 1) to measure lateral ankle support during quiet standing, 2) to determine lateral ankle support during walking over compliant surfaces, and 3) to evaluate plantarflexion assistance at push-off during treadmill walking, and 4) determine if the SR-AFO could be used for gait entrainment. Group results revealed increased ankle stiffness during quiet standing with the MAVS active, reduced ankle deflection while walking over compliant surfaces with the MAVS active, and reduced muscle effort from the SOL and GAS during 40 - 60% of the gait cycle with the dual ff-PAM active. The SR-AFO shows promising results in providing lateral ankle support and plantarflexion assistance with healthy participants, and a drastically increased basin of entrainment, which suggests a capability to help restore the gait of impaired users in future trials. The ff-PAM actuators were used in an X-orientation to assist the hip in flexion and extension. The Soft Robotic Hip Exosuit (SR-HExo) was evaluated using the same set of actuators and trials with healthy participants showed reduction in muscle effort during hip flexion and extension to further enhance the study of soft fabric actuators on human gait assistance.
ContributorsThalman, Carly Megan (Author) / Lee, Hyunglae (Thesis advisor) / Artemiadis, Panagiotis (Thesis advisor) / Sugar, Thomas (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021
161600-Thumbnail Image.png
Description
In the development of autonomous ground vehicles (AGVs), how to guarantee vehicle lateral stability is one of the most critical aspects. Based on nonlinear vehicle lateral and tire dynamics, new driving requirements of AGVs demand further studies and analyses of vehicle lateral stability control strategies. To achieve comprehensive analyses and

In the development of autonomous ground vehicles (AGVs), how to guarantee vehicle lateral stability is one of the most critical aspects. Based on nonlinear vehicle lateral and tire dynamics, new driving requirements of AGVs demand further studies and analyses of vehicle lateral stability control strategies. To achieve comprehensive analyses and stability-guaranteed vehicle lateral driving control, this dissertation presents three main contributions.First, a new method is proposed to estimate and analyze vehicle lateral driving stability regions, which provide a direct and intuitive demonstration for stability control of AGVs. Based on a four-wheel vehicle model and a nonlinear 2D analytical LuGre tire model, a local linearization method is applied to estimate vehicle lateral driving stability regions by analyzing vehicle local stability at each operation point on a phase plane. The obtained stability regions are conservative because both vehicle and tire stability are simultaneously considered. Such a conservative feature is specifically important for characterizing the stability properties of AGVs. Second, to analyze vehicle stability, two novel features of the estimated vehicle lateral driving stability regions are studied. First, a shifting vector is formulated to explicitly describe the shifting feature of the lateral stability regions with respect to the vehicle steering angles. Second, dynamic margins of the stability regions are formulated and applied to avoid the penetration of vehicle state trajectory with respect to the region boundaries. With these two features, the shiftable stability regions are feasible for real-time stability analysis. Third, to keep the vehicle states (lateral velocity and yaw rate) always stay in the shiftable stability regions, different control methods are developed and evaluated. Based on different vehicle control configurations, two dynamic sliding mode controllers (SMC) are designed. To better control vehicle stability without suffering chattering issues in SMC, a non-overshooting model predictive control is proposed and applied. To further save computational burden for real-time implementation, time-varying control-dependent invariant sets and time-varying control-dependent barrier functions are proposed and adopted in a stability-guaranteed vehicle control problem. Finally, to validate the correctness and effectiveness of the proposed theories, definitions, and control methods, illustrative simulations and experimental results are presented and discussed.
ContributorsHuang, Yiwen (Author) / Chen, Yan (Thesis advisor) / Lee, Hyunglae (Committee member) / Ren, Yi (Committee member) / Yong, Sze Zheng (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2021
190759-Thumbnail Image.png
Description
This thesis presents robust and novel solutions using knowledge distillation with geometric approaches and multimodal data that can address the current challenges in deep learning, providing a comprehensive understanding of the learning process involved in knowledge distillation. Deep learning has attained significant success in various applications, such as health and

This thesis presents robust and novel solutions using knowledge distillation with geometric approaches and multimodal data that can address the current challenges in deep learning, providing a comprehensive understanding of the learning process involved in knowledge distillation. Deep learning has attained significant success in various applications, such as health and wellness promotion, smart homes, and intelligent surveillance. In general, stacking more layers or increasing the number of trainable parameters causes deep networks to exhibit improved performance. However, this causes the model to become large, resulting in an additional need for computing and power resources for training, storage, and deployment. These are the core challenges in incorporating such models into small devices with limited power and computational resources. In this thesis, robust solutions aimed at addressing the aforementioned challenges are presented. These proposed methodologies and algorithmic contributions enhance the performance and efficiency of deep learning models. The thesis encompasses a comprehensive exploration of knowledge distillation, an approach that holds promise for creating compact models from high-capacity ones, while preserving their performance. This exploration covers diverse datasets, including both time series and image data, shedding light on the pivotal role of augmentation methods in knowledge distillation. The effects of these methods are rigorously examined through empirical experiments. Furthermore, the study within this thesis delves into the efficient utilization of features derived from two different teacher models, each trained on dissimilar data representations, including time-series and image data. Through these investigations, I present novel approaches to knowledge distillation, leveraging geometric techniques for the analysis of multimodal data. These solutions not only address real-world challenges but also offer valuable insights and recommendations for modeling in new applications.
ContributorsJeon, Eunsom (Author) / Turaga, Pavan (Thesis advisor) / Li, Baoxin (Committee member) / Lee, Hyunglae (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2023
190916-Thumbnail Image.png
Description
Soft robotics has garnered attention for its substantial prospective in various domains, such as manipulation and interactions with humans, by offering competitive advantages against rigid robotic systems, including inherent compliance and variable stiffness. Despite these benefits, their theoretically infinite degrees of freedom and prominent nonlinearities pose significant challenges in developing

Soft robotics has garnered attention for its substantial prospective in various domains, such as manipulation and interactions with humans, by offering competitive advantages against rigid robotic systems, including inherent compliance and variable stiffness. Despite these benefits, their theoretically infinite degrees of freedom and prominent nonlinearities pose significant challenges in developing dynamic models and guiding the robots along desired paths. Additionally, soft robots may exhibit rigid behaviors and potentially collide with their surroundings during path tracking tasks, particularly when possible contact points are unknown. In this dissertation, reduced-order models are used to describe the behaviors of three different soft robot designs, including both linear parameter varying (LPV) and augmented rigid robot (ARR) models. While the reduced-order model captures the majority of the soft robot's dynamics, modeling uncertainties notably remain. Non-repeated modeling uncertainties are addressed by categorizing them as a lumped disturbance, employing two methodologies, $H_\infty$ method and nonlinear disturbance observer (NDOB) based sliding mode control, for its rejection. For repeated disturbances, an iterative learning control (ILC) with a P-type learning function is implemented to enhance trajectory tracking efficacy. Furthermore,for non-repeated disturbances, the NDOB facilitates the contact estimation, and its results are jointly used with a switching algorithm to modify the robot trajectories. The stability proof of all controllers and corresponding simulation and experimental results are provided. For a path tracking task of a soft robot with multi-segments, a robust control strategy that combines a LPV model with an innovative improved nonlinear disturbance observer-based adaptive sliding mode control (INASMC). The control framework employs a first-order LPV model for dynamic representation, leverages an improved disturbance observer for accurate disturbance forecasting, and utilizes adaptive sliding mode control to effectively counteract uncertainties. The tracking error under the proposed controller is proven to be asymptotically stable, and the controller's effectiveness is is validated with simulation and experimental results. Ultimately, this research mitigates the inherent uncertainty in soft robot modeling, thereby enhancing their functionality in contact-intensive tasks.
ContributorsQIAO, ZHI (Author) / Zhang, Wenlong (Thesis advisor) / Marvi, Hamidreza (Committee member) / Lee, Hyunglae (Committee member) / Berman, Spring (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2023
189365-Thumbnail Image.png
Description
While wearable soft robots have successfully addressed many inherent design limitations faced by wearable rigid robots, they possess a unique set of challenges due to their soft and compliant nature. Some of these challenges are present in the sensing, modeling, control and evaluation of wearable soft robots. Machine learning algorithms

While wearable soft robots have successfully addressed many inherent design limitations faced by wearable rigid robots, they possess a unique set of challenges due to their soft and compliant nature. Some of these challenges are present in the sensing, modeling, control and evaluation of wearable soft robots. Machine learning algorithms have shown promising results for sensor fusion with wearable robots, however, they require extensive data to train models for different users and experimental conditions. Modeling soft sensors and actuators require characterizing non-linearity and hysteresis, which complicates deriving an analytical model. Experimental characterization can capture the characteristics of non-linearity and hysteresis but requires developing a synthesized model for real-time control. Controllers for wearable soft robots must be robust to compensate for unknown disturbances that arise from the soft robot and its interaction with the user. Since developing dynamic models for soft robots is complex, inaccuracies that arise from the unmodeled dynamics lead to significant disturbances that the controller needs to compensate for. In addition, obtaining a physical model of the human-robot interaction is complex due to unknown human dynamics during walking. Finally, the performance of soft robots for wearable applications requires extensive experimental evaluation to analyze the benefits for the user. To address these challenges, this dissertation focuses on the sensing, modeling, control and evaluation of soft robots for wearable applications. A model-based sensor fusion algorithm is proposed to improve the estimation of human joint kinematics, with a soft flexible robot that requires compact and lightweight sensors. To overcome limitations with rigid sensors, an inflatable soft haptic sensor is developed to enable gait sensing and haptic feedback. Through experimental characterization, a mathematical model is derived to quantify the user's ground reaction forces and the delivered haptic force. Lastly, the performance of a wearable soft exosuit in assisting human users during lifting tasks is evaluated, and the benefits obtained from the soft robot assistance are analyzed.
ContributorsQuiñones Yumbla, Emiliano (Author) / Zhang, Wenlong (Thesis advisor) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamid (Committee member) / Sugar, Thomas (Committee member) / Arizona State University (Publisher)
Created2023
171649-Thumbnail Image.png
Description
One of the long-standing issues that has arisen in the sports medicine field is identifying the ideal methodology to optimize recovery following anterior cruciate ligament reconstruction (ACLR). The perioperative period for ACLR is notoriously heterogeneous in nature as it consists of many variables that can impact surgical outcomes. While there

One of the long-standing issues that has arisen in the sports medicine field is identifying the ideal methodology to optimize recovery following anterior cruciate ligament reconstruction (ACLR). The perioperative period for ACLR is notoriously heterogeneous in nature as it consists of many variables that can impact surgical outcomes. While there has been extensive literature published regarding the efficacy of various recovery and rehabilitation topics, it has been widely acknowledged that certain modalities within the field of ACLR rehabilitation need further high-quality evidence to support their use in clinical practice, such as blood flow restriction (BFR) training. BFR training involves the application of a tourniquet-like cuff to the proximal aspect of a limb prior to exercise; the cuff is inflated so that it occludes venous flow but allows arterial inflow. BFR is usually combined with low-intensity (LI) resistance training, with resistance as low as 20% of one-repetition maximum (1RM). LI-BFR has been used as an emerging clinical modality to combat postoperative atrophy of the quadriceps muscles for those who have undergone ACLR, as these individuals cannot safely tolerate high muscular tension exercise after surgery. Impairments of the quadriceps are the major cause of poor functional status of patients following an otherwise successful ACLR procedure; however, these impairments can be mitigated with preoperative rehabilitation done before surgery. It was hypothesized that the use of a preoperative LI-BFR training protocol could help improve postoperative outcomes following ACLR; primarily, strength and hypertrophy of the quadriceps. When compared with a SHAM control group, subjects who were randomized to a BFR intervention group made greater preoperative strength gains in the quadriceps and recovered quadriceps mass at an earlier timepoint than that of the SHAM group aftersurgery; however, the gains made in strength were not able to be maintained in the 8-week postoperative period. While these results do not support the use of LI-BFR from the short-term perspective after ACLR, follow-up data will be used to investigate trends in re-injury and return to sport rates to evaluate the efficacy of the use of LI-BFR from a long-term perspective.
ContributorsGlattke, Kaycee Elizabeth (Author) / Lockhart, Thurmon (Thesis advisor) / McDaniel, Troy (Committee member) / Banks, Scott (Committee member) / Peterson, Daniel (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2022
168479-Thumbnail Image.png
Description
This dissertation presents a comprehensive study of modeling and control issues associated with nonholonomic differential drive mobile robots. The first part of dissertation focuses on modeling using Lagrangian mechanics. The dynamics is modeled as a two-input two-output (TITO) nonlinear model. Motor dynamics are also modeled. Trade studies are conducted to

This dissertation presents a comprehensive study of modeling and control issues associated with nonholonomic differential drive mobile robots. The first part of dissertation focuses on modeling using Lagrangian mechanics. The dynamics is modeled as a two-input two-output (TITO) nonlinear model. Motor dynamics are also modeled. Trade studies are conducted to shed light on critical vehicle design parameters, and how they impact static properties, dynamic properties, directional stability, coupling and overall vehicle design. An aspect ratio based dynamic decoupling condition is also presented. The second part of dissertation addresses design of linear time-invariant (LTI), multi-input multi-ouput (MIMO) fixed-structure H∞ controllers for the inner-loop velocity (v, ω) tracking system of the robot, motivated by a practical desire to design classically structured robust controllers. The fixed-structure H∞-optimal controllers are designed using Generalized Mixed Sensitivity(GMS) methodology to systematically shape properties at distinct loop breaking points. The H∞-control problem is solved using nonsmooth optimization techniques to compute locally optimal solutions. Matlab’s Robust Control toolbox (Hinfstruct and Systune) is used to solve the nonsmooth optimization. The dissertation also addresses the design of fixed-structure MIMO gain-scheduled H∞ controllers via GMS methodology. Trade-off studies are conducted to address the effect of vehicle design parameters on frequency and time domain properties of the inner-loop control system of mobile robot. The third part of dissertation focuses on the design of outer-loop position (x, y, θ) control system of mobile robot using real-time model predictive control (MPC) algorithms. Both linear time-varying (LTV) MPC and nonlinear MPC algorithms are discussed.The outer-loop performance of mobile robot is studied for two applications - 1) single robot trajectory tracking and multi-robot coordination in presence of obstacles, 2) maximum progress maneuvering on racetrack. The dissertation specifically addresses the impact of variation of c.g. position w.r.t. wheel-axle on directional maneuverability, peak control effort required to perform aggressive maneuvers, and overall position control performance. Detailed control relevant performance trade-offs associated with outer-loop position control are demonstrated through simulations in discrete time. Optimizations packages CPLEX(convex-QP in LTV-MPC) and ACADO(NLP in nonlinear-MPC) are used to solve the OCP in real time. All simulations are performed on Robot Operating System (ROS).
ContributorsMondal, Kaustav (Author) / Rodriguez, Armando A (Thesis advisor) / Berman, Spring M (Committee member) / Si, Jenni (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2021
168460-Thumbnail Image.png
Description
In this dissertation, new data-driven techniques are developed to solve three problems related to generating predictive models of the immune system. These problems and their solutions are summarized as follows. The first problem is that, while cellular characteristics can be measured using flow cytometry, immune system cells are often

In this dissertation, new data-driven techniques are developed to solve three problems related to generating predictive models of the immune system. These problems and their solutions are summarized as follows. The first problem is that, while cellular characteristics can be measured using flow cytometry, immune system cells are often analyzed only after they are sorted into groups by those characteristics. In Chapter 3 a method of analyzing the cellular characteristics of the immune system cells by generating Probability Density Functions (PDFs) to model the flow cytometry data is proposed. To generate a PDF to model the distribution of immune cell characteristics a new class of random variable called Sliced-Distributions (SDs) is developed. It is shown that the SDs can outperform other state-of-the-art methods on a set of benchmarks and can be used to differentiate between immune cells taken from healthy patients and those with Rheumatoid Arthritis. The second problem is that while immune system cells can be broken into different subpopulations, it is unclear which subpopulations are most significant. In Chapter 4 a new machine learning algorithm is formulated and used to identify subpopulations that can best predict disease severity or the populations of other immune cells. The proposed machine learning algorithm performs well when compared to other state-of-the-art methods and is applied to an immunological dataset to identify disease-relevant subpopulations of immune cells denoted immune states. Finally, while immunotherapies have been effectively used to treat cancer, selecting an optimal drug dose and period of treatment administration is still an open problem. In Chapter 5 a method to estimate Lyapunov functions of a system with unknown dynamics is proposed. This method is applied to generate a semialgebraic set containing immunotherapy doses and period of treatment that is predicted to eliminate a patient's tumor. The problem of selecting an optimal pulsed immunotherapy treatment from this semialgebraic set is formulated as a Global Polynomial Optimization (GPO) problem. In Chapter 6 a new method to solve GPO problems is proposed and optimal pulsed immunotherapy treatments are identified for this system.
ContributorsColbert, Brendon (Author) / Peet, Matthew M (Thesis advisor) / Acharya, Abhinav P (Committee member) / Berman, Spring M (Committee member) / Crespo, Luis G (Committee member) / Yong, Sze Z (Committee member) / Arizona State University (Publisher)
Created2021
168583-Thumbnail Image.png
Description
Technological progress in robot sensing, design, and fabrication, and the availability of open source software frameworks such as the Robot Operating System (ROS), are advancing the applications of swarm robotics from toy problems to real-world tasks such as surveillance, precision agriculture, search-and-rescue, and infrastructure inspection. These applications will require the

Technological progress in robot sensing, design, and fabrication, and the availability of open source software frameworks such as the Robot Operating System (ROS), are advancing the applications of swarm robotics from toy problems to real-world tasks such as surveillance, precision agriculture, search-and-rescue, and infrastructure inspection. These applications will require the development of robot controllers and system architectures that scale well with the number of robots and that are robust to robot errors and failures. To achieve this, one approach is to design decentralized robot control policies that require only local sensing and local, ad-hoc communication. In particular, stochastic control policies can be designed that are agnostic to individual robot identities and do not require a priori information about the environment or sophisticated computation, sensing, navigation, or communication capabilities. This dissertation presents novel swarm control strategies with these properties for detecting and mapping static targets, which represent features of interest, in an unknown, bounded, obstacle-free environment. The robots move on a finite spatial grid according to the time-homogeneous transition probabilities of a Discrete-Time Discrete-State (DTDS) Markov chain model, and they exchange information with other robots within their communication range using a consensus (agreement) protocol. This dissertation extend theoretical guarantees on multi-robot consensus over fixed and time-varying communication networks with known connectivity properties to consensus over the networks that have Markovian switching dynamics and no presumed connectivity. This dissertation develops such swarm consensus strategies for detecting a single feature in the environment, tracking multiple features, and reconstructing a discrete distribution of features modeled as an occupancy grid map. The proposed consensus approaches are validated in numerical simulations and in 3D physics-based simulations of quadrotors in Gazebo. The scalability of the proposed approaches is examined through extensive numerical simulation studies over different swarm populations and environment sizes.
ContributorsShirsat, Aniket (Author) / Berman, Spring (Thesis advisor) / Lee, Hyunglae (Committee member) / Marvi, Hamid (Committee member) / Saripalli, Srikanth (Committee member) / Gharavi, Lance (Committee member) / Arizona State University (Publisher)
Created2022