Matching Items (11)
Filtering by

Clear all filters

152192-Thumbnail Image.png
Description
ABSTRACT Peptide microarrays may prove to be a powerful tool for proteomics research and clinical diagnosis applications. Fodor et al. and Maurer et al. have shown proof-of-concept methods of light- and electrochemically-directed peptide microarray fabrication on glass and semiconductor microchips respectively. In this work, peptide microarray fabrication based on the

ABSTRACT Peptide microarrays may prove to be a powerful tool for proteomics research and clinical diagnosis applications. Fodor et al. and Maurer et al. have shown proof-of-concept methods of light- and electrochemically-directed peptide microarray fabrication on glass and semiconductor microchips respectively. In this work, peptide microarray fabrication based on the abovementioned techniques were optimized. In addition, MALDI mass spectrometry based peptide synthesis characterization on semiconductor microchips was developed and novel applications of a CombiMatrix (CBMX) platform for electrochemically controlled synthesis were explored. We have investigated performance of 2-(2-nitrophenyl)propoxycarbonyl (NPPOC) derivatives as photo-labile protecting group. Specifically, influence of substituents on 4 and 5 positions of phenyl ring of NPPOC group on the rate of photolysis and the yield of the amine was investigated. The results indicated that substituents capable of forming a π-network with the nitro group enhanced the rate of photolysis and yield. Once such properly substituted NPPOC groups were used, the rate of photolysis/yield depended on the nature of protected amino group indicating that a different chemical step during the photo-cleavage process became the rate limiting step. We also focused on electrochemically-directed parallel synthesis of high-density peptide microarrays using the CBMX technology referred to above which uses electrochemically generated acids to perform patterned chemistry. Several issues related to peptide synthesis on the CBMX platform were studied and optimized, with emphasis placed on the reactions of electro-generated acids during the deprotection step of peptide synthesis. We have developed a MALDI mass spectrometry based method to determine the chemical composition of microarray synthesis, directly on the feature. This method utilizes non-diffusional chemical cleavage from the surface, thereby making the chemical characterization of high-density microarray features simple, accurate, and amenable to high-throughput. CBMX Corp. has developed a microarray reader which is based on electro-chemical detection of redox chemical species. Several parameters of the instrument were studied and optimized and novel redox applications of peptide microarrays on CBMX platform were also investigated using the instrument. These include (i) a search of metal binding catalytic peptides to reduce overpotential associated with water oxidation reaction and (ii) an immobilization of peptide microarrays using electro-polymerized polypyrrole.
ContributorsKumar, Pallav (Author) / Woodbury, Neal (Thesis advisor) / Allen, James (Committee member) / Johnston, Stephen (Committee member) / Arizona State University (Publisher)
Created2013
171906-Thumbnail Image.png
Description
Infrastructure systems are facing non-stationary challenges that stem from climate change and the increasingly complex interactions between the social, ecological, and technological systems (SETSs). It is crucial for transportation infrastructures—which enable residents to access opportunities and foster prosperity, quality of life, and social connections—to be resilient under these non-stationary challenges.

Infrastructure systems are facing non-stationary challenges that stem from climate change and the increasingly complex interactions between the social, ecological, and technological systems (SETSs). It is crucial for transportation infrastructures—which enable residents to access opportunities and foster prosperity, quality of life, and social connections—to be resilient under these non-stationary challenges. Vulnerability assessment (VA) examines the potential consequences a system is likely to experience due to exposure to perturbation or stressors and lack of the capacity to adapt. Post-fire debris flow and heat represent particularly challenging problems for infrastructure and users in the arid U.S. West. Post-fire debris flow, which is manifested with heat and drought, produces powerful runoff threatening physical transportation infrastructures. And heat waves have devastating health effects on transportation infrastructure users, including increased mortality rates. VA anticipates the potential consequences of these perturbations and enables infrastructure stakeholders to improve the system's resilience. The current transportation climate VA—which only considers a single direct climate stressor on the infrastructure—falls short of addressing the wildfire and heat challenges. This work proposes advanced transportation climate VA methods to address the complex and multiple climate stressors and the vulnerability of infrastructure users. Two specific regions were chosen to carry out the progressive transportation climate VA: 1) the California transportation networks’ vulnerability to post-fire debris flows, and 2) the transportation infrastructure user’s vulnerability to heat exposure in Phoenix.
ContributorsLi, Rui (Author) / Chester, Mikhail V. (Thesis advisor) / Middel, Ariane (Committee member) / Hondula, David M. (Committee member) / Pendyala, Ram (Committee member) / Arizona State University (Publisher)
Created2022
161951-Thumbnail Image.png
Description
Particulate Guanylyl Cyclase Receptor A (pGC-A) is an atrial natriuretic peptide receptor, which plays a vital role in controlling cardiovascular, renal, and endocrine functions. The extracellular domain of pGC-A interacts with natriuretic peptides and triggers the intracellular guanylyl cyclase domain to convert GTP to cGMP. To effectively develop a method

Particulate Guanylyl Cyclase Receptor A (pGC-A) is an atrial natriuretic peptide receptor, which plays a vital role in controlling cardiovascular, renal, and endocrine functions. The extracellular domain of pGC-A interacts with natriuretic peptides and triggers the intracellular guanylyl cyclase domain to convert GTP to cGMP. To effectively develop a method that can regulate pGC-A, structural information regarding its intact form is necessary. Currently, only the extracellular domain structure of rat pGC-A has been determined. However, structural data regarding the transmembrane domain, as well as functional intracellular domain regions, need to be elucidated.This dissertation presents detailed information regarding pGC-A expression and optimization in the baculovirus expression vector system, along with the first purification method for purifying functional intact human pGC-A. The first in vitro evidence of a purified intact human pGC-A tetramer was detected in detergent micellar solution. Intact pGC-A is currently proposed to function as a homodimer. Upon analyzing my findings and acknowledging that dimer formation is required for pGC-A functionality, I proposed the first tetramer complex model composed of two functional subunits (homodimer). Forming tetramer complexes on the cell membrane increases pGC-A binding efficiency and ligand sensitivity. Currently, a two-step mechanism has been proposed for ATP-dependent pGC-A signal transduction. Based on cGMP functional assay results, it can be suggested that the binding ligand also moderately activates pGC-A, and that ATP is not crucial for the activation of guanylyl cyclase. Instead, three modulators can regulate different activation levels in intact pGC-A. Crystallization of purified intact pGC-A was performed to determine its structure. During the crystallization condition screening process, I successfully selected seven promising initial crystallization conditions for intact human pGC-A crystallization. One selected condition led to the formation of excellent needle-shaped crystals. During the serial crystallography diffraction experiment, five diffraction patterns were detected. The highest diffraction resolution spot reached 3 Å. This work will allow the determination of the intact human pGC-A structure while also providing structural information on the protein signal transduction mechanism. Further structural knowledge may potentially lead to improved drug design. More precise mutation experiments could help verify the current pGC-A signal transduction and activation mechanism.
ContributorsZhang, Shangji (Author) / Fromme, Petra (Thesis advisor) / Johnston, Stephen (Committee member) / Mazor, Yuval (Committee member) / Arizona State University (Publisher)
Created2021
187639-Thumbnail Image.png
Description
Cities globally are experiencing substantial warming due to ongoing urbanization and climate change. However, existing efforts to mitigate urban heat focus mainly on new technologies, exacerbate social injustices, and ignore the need for a sustainability lens that considers environmental, social, and economic perspectives. Heat in urban areas is amplified and

Cities globally are experiencing substantial warming due to ongoing urbanization and climate change. However, existing efforts to mitigate urban heat focus mainly on new technologies, exacerbate social injustices, and ignore the need for a sustainability lens that considers environmental, social, and economic perspectives. Heat in urban areas is amplified and urgently needs to be considered as a critical sustainability issue that crosses disciplinary and sectoral (traditional) boundaries. The missing urgency is concerning because urban overheating is a multi-faceted threat to the well-being and performance of individuals as well as the energy efficiency and economy of cities. Urban heat consequences require transformation in ways of thinking by involving the best available knowledge engaging scientists, policymakers, and communities. To do so, effective heat mitigation planning requires a considerable amount of diverse knowledge sources, yet urban planners face multiple barriers to effective heat mitigation, including a lack of usable, policy-relevant science and governance structures. To address these issues, transdisciplinary approaches, such as co-production via partnerships and the creation of usable, policy-relevant science, are necessary to allow for sustainable and equitable heat mitigation that allow cities to work toward multiple Sustainable Development Goals (SDGs) using a systems approach. This dissertation presents three studies that contribute to a sustainability lens on urban heat, improve the holistic and multi-perspective understanding of heat mitigation strategies, provide contextual guidance for reflective pavement as a heat mitigation strategy, and evaluate a multilateral, sustainability-oriented, co-production partnership to foster heat resilience equitably in cities. Results show that science and city practice communicate differently about heat mitigation strategies while both avoid to communicate disservices and trade-offs. Additionally, performance evaluation of heat mitigation strategies for decision-making needs to consider multiple heat metrics, people, and background climate. Lastly, the partnership between science, city practice, and community needs to be evaluated to be accountable and provide a pathway of growth for all partners. The outcomes of this dissertation advance research and awareness of urban heat for science, practice, and community, and provide guidance to improve holistic and sustainable decision-making in cities and partnerships to address SDGs around urban heat.
ContributorsSchneider, Florian Arwed (Author) / Middel, Ariane (Thesis advisor) / Vanos, Jennifer K (Committee member) / Withycombe Keeler, Lauren (Committee member) / Arizona State University (Publisher)
Created2023
187355-Thumbnail Image.png
Description
Extreme heat and its human impacts are significant public health challenges that disproportionately affect certain populations. Often, people with the least resources to cope with the heat also live in the hottest regions of cities. Previous heat vulnerability research has predominantly been conducted at a coarse geographic scale, yet translating

Extreme heat and its human impacts are significant public health challenges that disproportionately affect certain populations. Often, people with the least resources to cope with the heat also live in the hottest regions of cities. Previous heat vulnerability research has predominantly been conducted at a coarse geographic scale, yet translating relationships measured at aggregated scales to the individual level can result in ecological fallacy. Prior work has also primarily studied the most severe health outcomes: hospitalization/emergency care and mortality. It is likely that magnitudes more people are experiencing negative health impacts from heat that do not necessarily result in medical care. Such less severe impacts are under-researched in the literature.This dissertation addresses these knowledge gaps by identifying how social characteristics and physical measurements of heat at the individual and household level act independently and in concert to influence human heat-related outcomes, especially less severe outcomes. In the first paper, meta-analysis was used to quantify the summary effects of vulnerability indicators on incidence of heat-related illness. More proximal vulnerability indicators (e.g., residential air conditioning use, indoor heat exposure, etc.) tended to have the strongest impact on odds of experiencing heat-related illness than more distal indicators. In the next paper, indoor air temperature observations were related to the social characteristics of the residents. The strongest predictor of indoor air temperature was the residents’ ideal thermally comfortable temperature, despite affordability. In the final paper, fine scale biometeorological observations of the outdoor thermal environment near residents’ homes were linked to their experience with heat-related illness. The outdoor thermal environment appeared to have a stronger, more consistent impact on heat-related illness among households in a lower income neighborhood compared to a higher income one. These findings affirm the value of employing residential heat mitigation solutions at the individual and household scale, indoors and outdoors. Across all chapters, the indoor thermal environment, and the ability to modify it, had a clear impact on residents’ comfort and health. Solutions that target the most proximal causal factors of heat-related illness will likely have the greatest impact on reducing the burden of heat on human health and well-being.
ContributorsWright, Mary K (Author) / Hondula, David M (Thesis advisor) / Larson, Kelli L (Committee member) / Middel, Ariane (Committee member) / Arizona State University (Publisher)
Created2023
156599-Thumbnail Image.png
Description
The global increase in urbanization has raised questions about urban sustainability to which multiple research communities have entered. Those communities addressing interest in the urban heat island (UHI) effect and extreme temperatures include land system science, urban/landscape ecology, and urban climatology. General investigations of UHI have focused primarily on land

The global increase in urbanization has raised questions about urban sustainability to which multiple research communities have entered. Those communities addressing interest in the urban heat island (UHI) effect and extreme temperatures include land system science, urban/landscape ecology, and urban climatology. General investigations of UHI have focused primarily on land surface and canopy layer air temperatures. The surface temperature is of prime importance to UHI studies because of its central rule in the surface energy balance, direct effects on air temperature, and outdoor thermal comfort. Focusing on the diurnal surface temperature variations in Phoenix, Arizona, especially on the cool (green space) island effect and the surface heat island effect, the dissertation develops three research papers that improve the integration among the abovementioned sub-fields. Specifically, these papers involve: (1) the quantification and modeling of the diurnal cooling benefits of green space; (2) the optimization of green space locations to reduce the surface heat island effect in daytime and nighttime; and, (3) an evaluation of the effects of vertical urban forms on land surface temperature using Google Street View. These works demonstrate that the pattern of new green spaces in central Phoenix could be optimized such that 96% of the maximum daytime and nighttime cooling benefits would be achieved, and that Google Street View data offers an alternative to other data, providing the vertical dimensions of land-cover for addressing surface temperature impacts, increasing the model accuracy over the use of horizontal land-cover data alone. Taken together, the dissertation points the way towards the integration of research directions to better understand the consequences of detailed land conditions on temperatures in urban areas, providing insights for urban designs to alleviate these extremes.
ContributorsZhang, Yujia (Author) / Turner, Billie (Thesis advisor) / Murray, Alan T. (Committee member) / Myint, Soe W (Committee member) / Middel, Ariane (Committee member) / Arizona State University (Publisher)
Created2018
157548-Thumbnail Image.png
Description
Urban-induced heating is a challenge to the livability and health of city dwellers. It is a complex issue that many cities are facing, and a more urgent hazard in hot urban deserts (HUDs) than elsewhere due to already high temperatures and aridity. The challenge compounds in the absence of more

Urban-induced heating is a challenge to the livability and health of city dwellers. It is a complex issue that many cities are facing, and a more urgent hazard in hot urban deserts (HUDs) than elsewhere due to already high temperatures and aridity. The challenge compounds in the absence of more localized heat mitigation understanding. In addition, over-reliance on evidence from temperate regions is disconnected from the actualities of extreme bioclimatic dynamics found in HUDs. This dissertation is an integration of a series of studies that inform urban climate relationships specific to HUDs. This three-paper dissertation demonstrates heat mitigation aspirational goals from actualities, depicts local urban thermal drivers in Kuwait, and then tests morphological sensitivity of selected thermal modulation strategies in one neighborhood in Kuwait City.

The first paper is based on a systematic literature review where evidence from morphological mitigation strategies in HUDs were critically reviewed, synthesized and integrated. Metrics, measurements, and methods were extracted to examine the applicability of the different strategies, and a content synthesis identified the levels of strategy success. Collective challenges and uncertainties were interpreted to compare aspirational goals from actualities of morphological mitigation strategies.

The second paper unpacks the relationship of urban morphological attributes in influencing thermal conditions to assess latent magnitudes of heat amelioration strategies. Mindful of the challenges presented in the first study, a 92-day summer field-measurement campaign captured system dynamics of urban thermal stimuli within sub-diurnal phenomena. A composite data set of sub-hourly air temperature measurements with sub-meter morphological attributes was built, statistically analyzed, and modeled. Morphological mediation effects were found to vary hourly with different patterns under varying weather conditions in non-linear associations. Results suggest mitigation interventions be investigated and later tested on a site- use and time-use basis.

The third paper concludes with a simulation-based study to conform on the collective findings of the earlier studies. The microclimate model ENVI-met 4.4, combined with field measurements, was used to simulate the effect of rooftop shade-sails in cooling the near ground thermal environment. Results showed significant cooling effects and thus presented a novel shading approach that challenges orthodox mitigation strategies in HUDs.
ContributorsAlKhaled, Saud R A H (Author) / Coseo, Paul (Thesis advisor) / Brazel, Anthony (Thesis advisor) / Middel, Ariane (Committee member) / Cheng, Chingwen (Committee member) / Arizona State University (Publisher)
Created2019
156114-Thumbnail Image.png
Description
Immunosignature is a technology that retrieves information from the immune system. The technology is based on microarrays with peptides chosen from random sequence space. My thesis focuses on improving the Immunosignature platform and using Immunosignatures to improve diagnosis for diseases. I first contributed to the optimization of the immunosignature platform

Immunosignature is a technology that retrieves information from the immune system. The technology is based on microarrays with peptides chosen from random sequence space. My thesis focuses on improving the Immunosignature platform and using Immunosignatures to improve diagnosis for diseases. I first contributed to the optimization of the immunosignature platform by introducing scoring metrics to select optimal parameters, considering performance as well as practicality. Next, I primarily worked on identifying a signature shared across various pathogens that can distinguish them from the healthy population. I further retrieved consensus epitopes from the disease common signature and proposed that most pathogens could share the signature by studying the enrichment of the common signature in the pathogen proteomes. Following this, I worked on studying cancer samples from different stages and correlated the immune response with whether the epitope presented by tumor is similar to the pathogen proteome. An effective immune response is defined as an antibody titer increasing followed by decrease, suggesting elimination of the epitope. I found that an effective immune response usually correlates with epitopes that are more similar to pathogens. This suggests that the immune system might occupy a limited space and can be effective against only certain epitopes that have similarity with pathogens. I then participated in the attempt to solve the antibiotic resistance problem by developing a classification algorithm that can distinguish bacterial versus viral infection. This algorithm outperforms other currently available classification methods. Finally, I worked on the concept of deriving a single number to represent all the data on the immunosignature platform. This is in resemblance to the concept of temperature, which is an approximate measurement of whether an individual is healthy. The measure of Immune Entropy was found to work best as a single measurement to describe the immune system information derived from the immunosignature. Entropy is relatively invariant in healthy population, but shows significant differences when comparing healthy donors with patients either infected with a pathogen or have cancer.
ContributorsWang, Lu (Author) / Johnston, Stephen (Thesis advisor) / Stafford, Phillip (Committee member) / Buetow, Kenneth (Committee member) / McFadden, Grant (Committee member) / Arizona State University (Publisher)
Created2018
158683-Thumbnail Image.png
Description
This work advances structural and biophysical studies of three proteins important in disease. First protein of interest is the Francisella tularensis outer membrane protein A (FopA), which is a virulence determinant of tularemia. This work describes recombinant expression in Escherichia coli and successful purification of membrane translocated FopA. The purified

This work advances structural and biophysical studies of three proteins important in disease. First protein of interest is the Francisella tularensis outer membrane protein A (FopA), which is a virulence determinant of tularemia. This work describes recombinant expression in Escherichia coli and successful purification of membrane translocated FopA. The purified protein was dimeric as shown by native polyacrylamide gel electrophoresis and small angle X-ray scattering (SAXS) analysis, with an abundance of β-strands based on circular dichroism spectroscopy. SAXS data supports the presence of a pore. Furthermore, protein crystals of membrane translocated FopA were obtained with preliminary X-ray diffraction data. The identified crystallization condition provides the means towards FopA structure determination; a valuable tool for structure-based design of anti-tularemia therapeutics.

Next, the nonstructural protein μNS of avian reoviruses was investigated using in vivo crystallization and serial femtosecond X-ray crystallography. Avian reoviruses infect poultry flocks causing significant economic losses. μNS is crucial in viral factory formation facilitating viral replication within host cells. Thus, structure-based targeting of μNS has the potential to disrupt intracellular viral propagation. Towards this goal, crystals of EGFP-tagged μNS (EGFP-μNS (448-605)) were produced in insect cells. The crystals diffracted to 4.5 Å at X-ray free electron lasers using viscous jets as crystal delivery methods and initial electron density maps were obtained. The resolution reported here is the highest described to date for μNS, which lays the foundation towards its structure determination.

Finally, structural, and functional studies of human Threonine aspartase 1 (Taspase1) were performed. Taspase1 is overexpressed in many liquid and solid malignancies. In the present study, using strategic circular permutations and X-ray crystallography, structure of catalytically active Taspase1 was resolved. The structure reveals the conformation of a 50 residues long fragment preceding the active side residue (Thr234), which has not been structurally characterized previously. This fragment adopted a straight helical conformation in contrast to previous predictions. Functional studies revealed that the long helix is essential for proteolytic activity in addition to the active site nucleophilic residue (Thr234) mediated proteolysis. Together, these findings enable a new approach for designing anti-cancer drugs by targeting the long helical fragment.
ContributorsNagaratnam, Nirupa (Author) / Fromme, Petra (Thesis advisor) / Johnston, Stephen (Thesis advisor) / Van Horn, Wade (Committee member) / Liu, Wei (Committee member) / Arizona State University (Publisher)
Created2020
158797-Thumbnail Image.png
Description

Urban climate conditions are the physical manifestation of formal and informal social forces of design, policy, and urban management. The urban design community (e.g. planners, architects, urban designers, landscape architects, engineers) impacts urban development through influential built projects and design discourse. Their decisions create urban landscapes that impact physiological and

Urban climate conditions are the physical manifestation of formal and informal social forces of design, policy, and urban management. The urban design community (e.g. planners, architects, urban designers, landscape architects, engineers) impacts urban development through influential built projects and design discourse. Their decisions create urban landscapes that impact physiological and mental health for people that live in and around them. Therefore, to understand possible opportunities for decision-making to support healthier urban environments and communities, this dissertation examines the role of neighborhood design on the thermal environment and the effect the thermal environment has on mental health. In situ data collection and numerical modeling are used to assess current and proposed urban design configurations in the Edison Eastlake public housing community in central Phoenix for their efficacy in cooling the thermal environment. A distributed lagged non-linear model is used to investigate the relative risk of hospitalization for schizophrenia in Maricopa County based on atmospheric conditions. The dissertation incorporates both an assessment of design strategies for the cooling of the thermal environment and an analysis of the existing thermal environment’s relationship with mental health. By reframing the urban design of neighborhoods through the lens of urban climate, this research reinforces the importance of incorporating the community into the planning process and highlights some unintended outcomes of prioritizing the thermal environment in urban design.

ContributorsCrank, Peter J (Author) / Sailor, David (Thesis advisor) / Middel, Ariane (Committee member) / Hondula, David M. (Committee member) / Coseo, Paul J (Committee member) / Arizona State University (Publisher)
Created2020