Matching Items (5)
Filtering by

Clear all filters

152427-Thumbnail Image.png
Description
Consideration of both biological and human-use dynamics in coupled social-ecological systems is essential for the success of interventions such as marine reserves. As purely human institutions, marine reserves have no direct effects on ecological systems. Consequently, the success of a marine reserve depends on managers` ability to alter human behavior

Consideration of both biological and human-use dynamics in coupled social-ecological systems is essential for the success of interventions such as marine reserves. As purely human institutions, marine reserves have no direct effects on ecological systems. Consequently, the success of a marine reserve depends on managers` ability to alter human behavior in the direction and magnitude that supports reserve objectives. Further, a marine reserve is just one component in a larger coupled social-ecological system. The social, economic, political, and biological landscape all determine the social acceptability of a reserve, conflicts that arise, how the reserve interacts with existing fisheries management, accuracy of reserve monitoring, and whether the reserve is ultimately able to meet conservation and fishery enhancement goals. Just as the social-ecological landscape is critical at all stages for marine reserve, from initial establishment to maintenance, the reserve in turn interacts with biological and human use dynamics beyond its borders. Those interactions can lead to the failure of a reserve to meet management goals, or compromise management goals outside the reserve. I use a bio-economic model of a fishery in a spatially patchy environment to demonstrate how the pre-reserve fisheries management strategy determines the pattern of fishing effort displacement once the reserve is established, and discuss the social, political, and biological consequences of different patterns for the reserve and the fishery. Using a stochastic bio-economic model, I demonstrate how biological and human use connectivity can confound the accurate detection of reserve effects by violating assumptions in the quasi-experimental framework. Finally, I examine data on recreational fishing site selection to investigate changes in response to the announcement of enforcement of a marine reserve in the Gulf of California, Mexico. I generate a scale of fines that would fully or partially protect the reserve, providing a data-driven way for managers to balance biological and socio-economic goals. I suggest that natural resource managers consider human use dynamics with the same frequency, rigor, and tools as they do biological stocks.
ContributorsFujitani, Marie (Author) / Abbott, Joshua (Thesis advisor) / Fenichel, Eli (Thesis advisor) / Gerber, Leah (Committee member) / Anderies, John (Committee member) / Arizona State University (Publisher)
Created2014
156385-Thumbnail Image.png
Description
The Energiewende aims to drastically reduce Germany’s greenhouse gas emissions, without relying on nuclear power, while maintaining a secure and affordable energy supply. Since 2000 the country’s renewable-energy share has increased exponentially, accounting in 2017 for over a third of Germany's gross electricity consumption. This unprecedented achievement is the result

The Energiewende aims to drastically reduce Germany’s greenhouse gas emissions, without relying on nuclear power, while maintaining a secure and affordable energy supply. Since 2000 the country’s renewable-energy share has increased exponentially, accounting in 2017 for over a third of Germany's gross electricity consumption. This unprecedented achievement is the result of policies, tools, and institutional arrangements intended to steer society to a low-carbon economy. Despite its resounding success in renewable-energy deployment, the Energiewende is not on track to meet its decarbonization goals. Energiewende rules and regulations have generated numerous undesired consequences, and have cost much more than anticipated, a burden borne primarily by energy consumers. Why has the Energiewende not only made energy more expensive, but also failed to bring Germany closer to its decarbonization goals? I analyzed the Energiewende as a complex socio-technical system, examining its legal framework and analyzing the consequences of successive regulations; identifying major political and energy players and the factors that motivated them to pursue socio-technical change; and documenting the political trends and events in which the Energiewende is rooted and which continue to shape it. I analyzed the dynamics and the loopholes that created barriers to transition, pushed the utility sector to the brink of dissolution, and led to such undesirable outcomes as negative wholesale prices and forced exports of electricity to Germany’s European neighbors. Thirty high-level energy experts and stakeholders were interviewed to find out how the best-informed members of German society perceive the Energiewende. Surprisingly, although they were highly critical of the way the transition has unfolded, most were convinced that the transition would eventually succeed. But their definitions of success did not always depend on achieving carbon-mitigation targets. Indeed, Germany jeopardizes the achievement of these targets by changing too many policy and institutional variables at too fast a pace. Good intentions and commitment are not enough to create economies based on intermittent energy sources: they will also require intensive grid expansion and breakthroughs in storage technology. The Energiewende demonstrates starkly that collective action driven by robust political consensus is not sufficient for steering complex socio-technical systems in desired directions.
ContributorsSturm, Christine (Author) / Sarewitz, Daniel (Thesis advisor) / Miller, Clark (Committee member) / Anderies, John (Committee member) / Hirt, Paul (Committee member) / Arizona State University (Publisher)
Created2018
155884-Thumbnail Image.png
Description

Trees serve as a natural umbrella to mitigate insolation absorbed by features of the urban environment, especially building structures and pavements. For a desert community, trees are a particularly valuable asset because they contribute to energy conservation efforts, improve home values, allow for cost savings, and promote enhanced health and

Trees serve as a natural umbrella to mitigate insolation absorbed by features of the urban environment, especially building structures and pavements. For a desert community, trees are a particularly valuable asset because they contribute to energy conservation efforts, improve home values, allow for cost savings, and promote enhanced health and well-being. The main obstacle in creating a sustainable urban community in a desert city with trees is the scarceness and cost of irrigation water. Thus, strategically located and arranged desert trees with the fewest tree numbers possible potentially translate into significant energy, water and long-term cost savings as well as conservation, economic, and health benefits. The objective of this dissertation is to achieve this research goal with integrated methods from both theoretical and empirical perspectives.

This dissertation includes three main parts. The first part proposes a spatial optimization method to optimize the tree locations with the objective to maximize shade coverage on building facades and open structures and minimize shade coverage on building rooftops in a 3-dimensional environment. Second, an outdoor urban physical scale model with field measurement is presented to understand the cooling and locational benefits of tree shade. The third part implements a microclimate numerical simulation model to analyze how the specific tree locations and arrangements influence outdoor microclimates and improve human thermal comfort. These three parts of the dissertation attempt to fill the research gap of how to strategically locate trees at the building to neighborhood scale, and quantifying the impact of such arrangements.

Results highlight the significance of arranging residential shade trees across different geographical scales. In both the building and neighborhood scales, research results recommend that trees should be arranged in the central part of the building south front yard. More cooling benefits are provided to the building structures and outdoor microclimates with a cluster tree arrangement without canopy overlap; however, if residents are interested in creating a better outdoor thermal environment, open space between trees is needed to enhance the wind environment for better human thermal comfort. Considering the rapid urbanization process, limited water resources supply, and the severe heat stress in the urban areas, judicious design and planning of trees is of increasing importance for improving the life quality and sustaining the urban environment.

ContributorsZhao, Qunshan (Author) / Wentz, Elizabeth (Thesis advisor) / Sailor, David (Committee member) / Wang, Zhi-Hua (Committee member) / Arizona State University (Publisher)
Created2017
154580-Thumbnail Image.png
Description
The plateau pika (Ochotona curzoniae), a small burrowing lagomorph that occupies the high alpine grassland ecosystems of the Qinghai-Tibetan Plateau in western China, remains a controversial subject among policymakers and researchers. One line of evidence points to pikas being a pest, which has led to massive attempts to eradicate pika

The plateau pika (Ochotona curzoniae), a small burrowing lagomorph that occupies the high alpine grassland ecosystems of the Qinghai-Tibetan Plateau in western China, remains a controversial subject among policymakers and researchers. One line of evidence points to pikas being a pest, which has led to massive attempts to eradicate pika populations. Another point of view is that pikas are a keystone species and an ecosystem engineer in the grassland ecosystem of the QTP. The pika eradication program raises a difficult ethical and religious dilemma for local pastoralists, and is criticized for not being supported by scientific evidence. Complex interactions between pikas, livestock, and habitat condition are poorly understood. My dissertation research examines underpinning justifications of the pika poisoning program leading to these controversies. I investigated responses of pikas to habitat conditions with field experimental manipulations, and mechanisms of pika population recovery following pika removal. I present policy recommendations based on an environmental ethics framework and findings from the field experiments. After five years of a livestock grazing exclusion experiment and four years of pika monitoring, I found that grazing exclusion resulted in a decline of pika habitat use, which suggests that habitat conditions determine pika population density. I also found that pikas recolonized vacant burrow systems following removal of residents, but that distances travelled by dispersing pikas were extremely short (~50 m). Thus, current pika eradication programs, if allowed to continue, could potentially compromise local populations as well as biodiversity conservation on the QTP. Lethal management of pikas is a narrowly anthropocentric-based form of ecosystem management that has excluded value-pluralism, such as consideration of the intrinsic value of species and the important ecological role played by pikas. These conflicting approaches have led to controversies and policy gridlock. In response, I suggest that the on-going large-scale pika eradication program needs reconsideration. Moderation of stocking rates is required in degraded pika habitats, and Integrated Pest Management may be required when high stocking rate and high pika density coexist. A moderate level of livestock and pika density can be consistent with maintaining the integrity and sustainability of the QTP alpine steppe ecosystem.
ContributorsBadingqiuying (Author) / Smith, Andrew T. (Thesis advisor) / Wu, Jianguo (Committee member) / Minteer, Ben (Committee member) / Anderies, John (Committee member) / Harris, Richard B. (Committee member) / Arizona State University (Publisher)
Created2016
155731-Thumbnail Image.png
Description
Urbanization and woody plant encroachment, with subsequent brush management, are two significant land cover changes that are represented in the southwestern United States. Urban areas continue to grow, and rangelands are undergoing vegetation conversions, either purposely through various rangeland management techniques, or by accident, through inadvertent effects of climate and

Urbanization and woody plant encroachment, with subsequent brush management, are two significant land cover changes that are represented in the southwestern United States. Urban areas continue to grow, and rangelands are undergoing vegetation conversions, either purposely through various rangeland management techniques, or by accident, through inadvertent effects of climate and management. This thesis investigates how areas undergoing land cover conversions in a semiarid region, through urbanization or rangeland management, influences energy, water and carbon fluxes. Specifically, the following scientific questions are addressed: (1) what is the impact of different urban land cover types in Phoenix, AZ on energy and water fluxes?, (2) how does the land cover heterogeneity influence energy, water, and carbon fluxes in a semiarid rangeland undergoing woody plant encroachment?, and (3) what is the impact of brush management on energy, water, and carbon fluxes?

The eddy covariance technique is well established to measure energy, water, and carbon fluxes and is used to quantify and compare flux measurements over different land surfaces. Results reveal that in an urban setting, paved surfaces exhibit the largest sensible and lowest latent heat fluxes in an urban environment, while a mesic landscape exhibits the largest latent heat fluxes, due to heavy irrigation. Irrigation impacts flux sensitivity to precipitation input, where latent heat fluxes increase with precipitation in xeric and parking lot landscapes, but do not impact the mesic system. In a semiarid managed rangeland, past management strategies and disturbance histories impact vegetation distribution, particularly the distribution of mesquite trees. At the site with less mesquite coverage, evapotranspiration (ET) is greater, due to greater grass cover. Both sites are generally net sinks of CO2, which is largely dependent on moisture availability, while the site with greater mesquite coverage has more respiration and generally greater gross ecosystem production (GEP). Initial impacts of brush management reveal ET and GEP decrease, due to the absence of mesquite trees. However the impact appears to be minimal by the end of the productive season. Overall, this dissertation advances the understanding of land cover change impacts on surface energy, water, and carbon fluxes in semiarid ecosystems.
ContributorsTempleton, Nicole Pierini (Author) / Vivoni, Enrique R (Thesis advisor) / Archer, Steven R (Committee member) / Mascaro, Giuseppe (Committee member) / Scott, Russell L. (Committee member) / Wang, Zhi-Hua (Committee member) / Arizona State University (Publisher)
Created2017