Matching Items (58)
Filtering by

Clear all filters

150024-Thumbnail Image.png
Description
Chemical and mineralogical data from Mars shows that the surface has been chemically weathered on local to regional scales. Chemical trends and the types of chemical weathering products present on the surface and their abundances can elucidate information about past aqueous processes. Thermal-infrared (TIR) data and their respective models are

Chemical and mineralogical data from Mars shows that the surface has been chemically weathered on local to regional scales. Chemical trends and the types of chemical weathering products present on the surface and their abundances can elucidate information about past aqueous processes. Thermal-infrared (TIR) data and their respective models are essential for interpreting Martian mineralogy and geologic history. However, previous studies have shown that chemical weathering and the precipitation of fine-grained secondary silicates can adversely affect the accuracy of TIR spectral models. Furthermore, spectral libraries used to identify minerals on the Martian surface lack some important weathering products, including poorly-crystalline aluminosilicates like allophane, thus eliminating their identification in TIR spectral models. It is essential to accurately interpret TIR spectral data from chemically weathered surfaces to understand the evolution of aqueous processes on Mars. Laboratory experiments were performed to improve interpretations of TIR data from weathered surfaces. To test the accuracy of deriving chemistry of weathered rocks from TIR spectroscopy, chemistry was derived from TIR models of weathered basalts from Baynton, Australia and compared to actual weathering rind chemistry. To determine how specific secondary silicates affect the TIR spectroscopy of weathered basalts, mixtures of basaltic minerals and small amounts of secondary silicates were modeled. Poorly-crystalline aluminosilicates were synthesized and their TIR spectra were added to spectral libraries. Regional Thermal Emission Spectrometer (TES) data were modeled using libraries containing these poorly-crystalline aluminosilicates to test for their presence on the Mars. Chemistry derived from models of weathered Baynton basalts is not accurate, but broad chemical weathering trends can be interpreted from the data. TIR models of mineral mixtures show that small amounts of crystalline and amorphous silicate weathering products (2.5-5 wt.%) can be detected in TIR models and can adversely affect modeled plagioclase abundances. Poorly-crystalline aluminosilicates are identified in Northern Acidalia, Solis Planum, and Meridiani. Previous studies have suggested that acid sulfate weathering was the dominant surface alteration process for the past 3.5 billion years; however, the identification of allophane indicates that alteration at near-neutral pH occurred on regional scales and that acid sulfate weathering is not the only weathering process on Mars.
ContributorsRampe, Elizabeth Barger (Author) / Sharp, Thomas G (Thesis advisor) / Christensen, Phillip (Committee member) / Hervig, Richard (Committee member) / Shock, Everett (Committee member) / Williams, Lynda (Committee member) / Arizona State University (Publisher)
Created2011
149677-Thumbnail Image.png
Description
Applications of non-traditional stable isotope variations are moving beyond geosciences to biomedicine, made possible by advances in multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) technology. Mass-dependent isotope variation can provide information about the sources of elements and the chemical reactions that they undergo. Iron and calcium isotope systematics in

Applications of non-traditional stable isotope variations are moving beyond geosciences to biomedicine, made possible by advances in multiple collector inductively coupled plasma mass spectrometry (MC-ICP-MS) technology. Mass-dependent isotope variation can provide information about the sources of elements and the chemical reactions that they undergo. Iron and calcium isotope systematics in biomedicine are relatively unexplored but have great potential scientific interest due to their essential nature in metabolism. Iron, a crucial element in biology, fractionates during biochemically relevant reactions. To test the extent of this fractionation in an important reaction process, equilibrium iron isotope fractionation during organic ligand exchange was determined. The results show that iron fractionates during organic ligand exchange, and that isotope enrichment increases as a function of the difference in binding constants between ligands. Additionally, to create a mass balance model for iron in a whole organism, iron isotope compositions in a whole mouse and in individual mouse organs were measured. The results indicate that fractionation occurs during transfer between individual organs, and that the whole organism was isotopically light compared with food. These two experiments advance our ability to interpret stable iron isotopes in biomedicine. Previous research demonstrated that calcium isotope variations in urine can be used as an indicator of changes in net bone mineral balance. In order to measure calcium isotopes by MC-ICP-MS, a chemical purification method was developed to quantitatively separate calcium from other elements in a biological matrix. Subsequently, this method was used to evaluate if calcium isotopes respond when organisms are subjected to conditions known to induce bone loss: 1) Rhesus monkeys were given an estrogen-suppressing drug; 2) Human patients underwent extended bed rest. In both studies, there were rapid, detectable changes in calcium isotope compositions from baseline - verifying that calcium isotopes can be used to rapidly detect changes in bone mineral balance. By characterizing iron isotope fractionation in biologically relevant processes and by demonstrating that calcium isotopes vary rapidly in response to bone loss, this thesis represents an important step in utilizing these isotope systems as a diagnostic and mechanistic tool to study the metabolism of these elements in vivo.
ContributorsMorgan, Jennifer Lynn Louden (Author) / Anbar, Ariel D. (Thesis advisor) / Wasylenki, Laura E. (Committee member) / Jones, Anne K. (Committee member) / Shock, Everett (Committee member) / Arizona State University (Publisher)
Created2011
149926-Thumbnail Image.png
Description
A new challenge on the horizon is to utilize the large amounts of protein found in the atmosphere to identify different organisms from which the protein originated. Included here is work investigating the presence of identifiable patterns of different proteins collected from the air and biological samples for the purposes

A new challenge on the horizon is to utilize the large amounts of protein found in the atmosphere to identify different organisms from which the protein originated. Included here is work investigating the presence of identifiable patterns of different proteins collected from the air and biological samples for the purposes of remote identification. Protein patterns were generated using high performance liquid chromatography (HPLC). Patterns created could identify high-traffic and low-traffic indoor spaces. Samples were collected from the air using air pumps to draw air through a filter paper trapping particulates, including large amounts of shed protein matter. In complimentary research aerosolized biological samples were collected from various ecosystems throughout Ecuador to explore the relationship between environmental setting and aerosolized protein concentrations. In order to further enhance protein separation and produce more detailed patterns for the identification of individual organisms of interest; a novel separation device was constructed and characterized. The separation device incorporates a longitudinal gradient as well as insulating dielectrophoretic features within a single channel. This design allows for the production of stronger local field gradients along a global gradient allowing particles to enter, initially transported through the channel by electrophoresis and electroosmosis, and to be isolated according to their characteristic physical properties, including charge, polarizability, deformability, surface charge mobility, dielectric features, and local capacitance. Thus, different types of particles are simultaneously separated at different points along the channel distance given small variations of properties. The device has shown the ability to separate analytes over a large dynamic range of size, from 20 nm to 1 μm, roughly the size of proteins to the size of cells. In the study of different sized sulfate capped polystyrene particles were shown to be selectively captured as well as concentrating particles from 103 to 106 times. Qualitative capture and manipulation of β-amyloid fibrils were also shown. The results demonstrate the selective focusing ability of the technique; and it may form the foundation for a versatile tool for separating complex mixtures. Combined this work shows promise for future identification of individual organisms from aerosolized protein as well as for applications in biomedical research.
ContributorsStaton, Sarah J. R (Author) / Hayes, Mark A. (Committee member) / Anbar, Ariel D (Committee member) / Shock, Everett (Committee member) / Williams, Peter (Committee member) / Arizona State University (Publisher)
Created2011
150228-Thumbnail Image.png
Description
The repression of reproductive competition and the enforcement of altruism are key components to the success of animal societies. Eusocial insects are defined by having a reproductive division of labor, in which reproduction is relegated to one or few individuals while the rest of the group members maintain the colony

The repression of reproductive competition and the enforcement of altruism are key components to the success of animal societies. Eusocial insects are defined by having a reproductive division of labor, in which reproduction is relegated to one or few individuals while the rest of the group members maintain the colony and help raise offspring. However, workers have retained the ability to reproduce in most insect societies. In the social Hymenoptera, due to haplodiploidy, workers can lay unfertilized male destined eggs without mating. Potential conflict between workers and queens can arise over male production, and policing behaviors performed by nestmate workers and queens are a means of repressing worker reproduction. This work describes the means and results of the regulation of worker reproduction in the ant species Aphaenogaster cockerelli. Through manipulative laboratory studies on mature colonies, the lack of egg policing and the presence of physical policing by both workers and queens of this species are described. Through chemical analysis and artificial chemical treatments, the role of cuticular hydrocarbons as indicators of fertility status and the informational basis of policing in this species is demonstrated. An additional queen-specific chemical signal in the Dufour's gland is discovered to be used to direct nestmate aggression towards reproductive competitors. Finally, the level of actual worker-derived males in field colonies is measured. Together, these studies demonstrate the effectiveness of policing behaviors on the suppression of worker reproduction in a social insect species, and provide an example of how punishment and the threat of punishment is a powerful force in maintaining cooperative societies.
ContributorsSmith, Adrian A. (Author) / Liebig, Juergen (Thesis advisor) / Hoelldobler, Bert (Thesis advisor) / Gadau, Juergen (Committee member) / Johnson, Robert A. (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
151655-Thumbnail Image.png
Description
There are several visual dimensions of food that can affect food intake, example portion size, color, and variety. This dissertation elucidates the effect of number of pieces of food on preference and amount of food consumed in humans and motivation for food in animals. Chapter 2 Experiment 1 showed that

There are several visual dimensions of food that can affect food intake, example portion size, color, and variety. This dissertation elucidates the effect of number of pieces of food on preference and amount of food consumed in humans and motivation for food in animals. Chapter 2 Experiment 1 showed that rats preferred and also ran faster for multiple pieces (30, 10 mg pellets) than an equicaloric, single piece of food (300 mg) showing that multiple pieces of food are more rewarding than a single piece. Chapter 2 Experiment 2 showed that rats preferred a 30-pellet food portion clustered together rather than scattered. Preference and motivation for clustered food pieces may be interpreted based on the optimal foraging theory that animals prefer foods that can maximize energy gain and minimize the risk of predation. Chapter 3 Experiment 1 showed that college students preferred and ate less of a multiple-piece than a single-piece portion and also ate less in a test meal following the multiple-piece than single-piece portion. Chapter 3 Experiment 2 replicated the results in Experiment 1 and used a bagel instead of chicken. Chapter 4 showed that college students given a five-piece chicken portion scattered on a plate ate less in a meal and in a subsequent test meal than those given the same portion clustered together. This is consistent with the hypothesis that multiple pieces of food may appear like more food because they take up a larger surface area than a single-piece portion. All together, these studies show that number and surface area occupied by food pieces are important visual cues determining food choice in animals and both food choice and intake in humans.
ContributorsBajaj, Devina (Author) / Phillips, Elizabeth D. (Thesis advisor) / Cohen, Adam (Committee member) / Johnston, Carol (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2013
151861-Thumbnail Image.png
Description
In October, 2009, participants of the Arizona Special Supplemental Nutrition Program for Women, Infants and Children (WIC) began receiving monthly Cash Value Vouchers (CVV) worth between six and 10 dollars towards the purchase of fresh fruits and vegetables. Data from the Arizona Department of Health Services (ADHS) showed CVV redemption

In October, 2009, participants of the Arizona Special Supplemental Nutrition Program for Women, Infants and Children (WIC) began receiving monthly Cash Value Vouchers (CVV) worth between six and 10 dollars towards the purchase of fresh fruits and vegetables. Data from the Arizona Department of Health Services (ADHS) showed CVV redemption rates in the first two years of the program were lower than the national average of 77% redemption. In response, the ADHS WIC Food List was expanded to also include canned and frozen fruits and vegetables. More recent data from ADHS suggest that redemption rates are improving, but variably exist among different WIC sub-populations. The purpose of this project was to identify themes related to the ease or difficulty of WIC CVV use amongst different categories of low-redeeming WIC participants. A total of 8 focus groups were conducted, four at a clinic in each of two Valley cities: Surprise and Mesa. Each of the four focus groups comprised one of four targeted WIC participant categories: pregnant, postpartum, breastfeeding, and children with participation ranging from 3-9 participants per group. Using the general inductive approach, recordings of the focus groups were transcribed, hand-coded and uploaded into qualitative analysis software resulting in four emergent themes including: interactions and shopping strategies, maximizing WIC value, redemption issues, and effect of rule change. Researchers identified twelve different subthemes related to the emergent theme of interactions and strategies to improve their experience, including economic considerations during redemption. Barriers related to interactions existed that made their purchase difficult, most notably anger from the cashier and other shoppers. However, participants made use of a number of strategies to facilitate WIC purchases or extract more value out of WIC benefits, such as pooling their CVV. Finally, it appears that the fruit and vegetable rule change was well received by those who were aware of the change. These data suggest a number of important avenues for future research, including verifying these themes are important within a larger, representative sample of Arizona WIC participants, and exploring strategies to minimize barriers identified by participants, such as use of electronic benefits transfer-style cards (EBT).
ContributorsBertmann, Farryl M. W (Author) / Wharton, Christopher (Christopher Mack), 1977- (Thesis advisor) / Ohri-Vachaspati, Punam (Committee member) / Johnston, Carol (Committee member) / Hampl, Jeffrey (Committee member) / Dixit-Joshi, Sujata (Committee member) / Barroso, Cristina (Committee member) / Arizona State University (Publisher)
Created2013
151378-Thumbnail Image.png
Description
Of all the signals and cues that orchestrate the activities of a social insect colony, the reproductives' fertility pheromones are perhaps the most fundamental. These pheromones regulate reproductive division of labor, a defining characteristic of eusociality. Despite their critical role, reproductive fertility pheromones are not evenly expressed across the development

Of all the signals and cues that orchestrate the activities of a social insect colony, the reproductives' fertility pheromones are perhaps the most fundamental. These pheromones regulate reproductive division of labor, a defining characteristic of eusociality. Despite their critical role, reproductive fertility pheromones are not evenly expressed across the development of a social insect colony and may even be absent in the earliest colony stages. In the ant Camponotus floridanus, queens of incipient colonies do not produce the cuticular hydrocarbons that serve as fertility and egg-marking signals in this species. My dissertation investigates the consequences of the dramatic change in the quantity of these pheromones that occurs as the colony grows. C. floridanus workers from large, established colonies use egg surface hydrocarbons to discriminate among eggs. Eggs with surface hydrocarbons typical of eggs laid by established queens are nurtured, whereas eggs lacking these signals (i.e., eggs laid by workers and incipient queens) are destroyed. I characterized how workers from incipient colonies responded to eggs lacking queen fertility hydrocarbons. I found that established-queen-laid eggs, incipient-queen-laid eggs, and worker-laid eggs were not destroyed by workers at this colony stage. Destruction of worker-laid eggs is a form of policing, and theoretical models predict that policing should be strongest in incipient colonies. Since there was no evidence of policing by egg-eating in incipient C. floridanus colonies, I searched for evidence of another policing mechanism at this colony stage. Finding none, I discuss reasons why policing behavior may not be expressed in incipient colonies. I then considered the mechanism that accounts for the change in workers' response to eggs. By manipulating ants' egg experience and testing their egg-policing decisions, I found that ants use a combination of learned and innate criteria to discriminate between targets of care and destruction. Finally, I investigated how the increasing strength of queen-fertility hydrocarbons affects nestmate recognition, which also relies on cuticular hydrocarbons. I found that queens with strong fertility hydrocarbons can be transferred between established colonies without aggression, but they cannot be introduced into incipient colonies. Queens from incipient colonies cannot be transferred into incipient or established colonies.
ContributorsMoore, Dani (Author) / Liebig, Juergen (Thesis advisor) / Gadau, Juergen (Committee member) / Pratt, Stephen (Committee member) / Smith, Brian (Committee member) / Rutowski, Ronald (Committee member) / Arizona State University (Publisher)
Created2012
152394-Thumbnail Image.png
Description
The development of the vertebrate musculoskeletal system is a highly dynamic process, requiring tight control of the specification and patterning of myogenic, chondrogenic and tenogenic cell types. Development of the diverse musculoskeletal lineages from a common embryonic origin in the paraxial mesoderm indicates the presence of a regulatory network of

The development of the vertebrate musculoskeletal system is a highly dynamic process, requiring tight control of the specification and patterning of myogenic, chondrogenic and tenogenic cell types. Development of the diverse musculoskeletal lineages from a common embryonic origin in the paraxial mesoderm indicates the presence of a regulatory network of transcription factors that direct lineage decisions. The basic helix-loop-helix transcription factor, PARAXIS, is expressed in the paraxial mesoderm during vertebrate somitogenesis, where it has been shown to play a critical role in the mesenchymal-to-epithelial transition associated with somitogenesis, and the development of the hypaxial skeletal musculature and axial skeleton. In an effort to elucidate the underlying genetic mechanism by which PARAXIS regulates the musculoskeletal system, I performed a microarray-based, genome-wide analysis comparing transcription levels in the somites of Paraxis-/- and Paraxis+/+ embryos. This study revealed targets of PARAXIS involved in multiple aspects of mesenchymal-to-epithelial transition, including Fap and Dmrt2, which modulate cell-extracellular matrix adhesion. Additionally, in the epaxial dermomyotome, PARAXIS activates the expression of the integrin subunits a4 and a6, which bind fibronectin and laminin, respectively, and help organize the patterning of trunk skeletal muscle. Finally, PARAXIS activates the expression of genes required for the epithelial-to-mesenchymal transition and migration of hypaxial myoblasts into the limb, including Lbx1 and Met. Together, these data point to a role for PARAXIS in the morphogenetic control of musculoskeletal patterning.
ContributorsRowton, Megan (Author) / Rawls, Alan (Thesis advisor) / Wilson-Rawls, Jeanne (Committee member) / Kusumi, Kenro (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2013
150622-Thumbnail Image.png
Description
A notable feature of advanced eusocial insect groups is a division of labor within the sterile worker caste. However, the physiological aspects underlying the differentiation of behavioral phenotypes are poorly understood in one of the most successful social taxa, the ants. By starting to understand the foundations on which social

A notable feature of advanced eusocial insect groups is a division of labor within the sterile worker caste. However, the physiological aspects underlying the differentiation of behavioral phenotypes are poorly understood in one of the most successful social taxa, the ants. By starting to understand the foundations on which social behaviors are built, it also becomes possible to better evaluate hypothetical explanations regarding the mechanisms behind the evolution of insect eusociality, such as the argument that the reproductive regulatory infrastructure of solitary ancestors was co-opted and modified to produce distinct castes. This dissertation provides new information regarding the internal factors that could underlie the division of labor observed in both founding queens and workers of Pogonomyrmex californicus ants, and shows that changes in task performance are correlated with differences in reproductive physiology in both castes. In queens and workers, foraging behavior is linked to elevated levels of the reproductively-associated juvenile hormone (JH), and, in workers, this behavioral change is accompanied by depressed levels of ecdysteroid hormones. In both castes, the transition to foraging is also associated with reduced ovarian activity. Further investigation shows that queens remain behaviorally plastic, even after worker emergence, but the association between JH and behavioral bias remains the same, suggesting that this hormone is an important component of behavioral development in these ants. In addition to these reproductive factors, treatment with an inhibitor of the nutrient-sensing pathway Target of Rapamycin (TOR) also causes queens to become biased towards foraging, suggesting an additional sensory component that could play an important role in division of labor. Overall, this work provides novel identification of the possible regulators behind ant division of labor, and suggests how reproductive physiology could play an important role in the evolution and regulation of non-reproductive social behaviors.
ContributorsDolezal, Adam G (Author) / Amdam, Gro V (Thesis advisor) / Brent, Colin S. (Committee member) / Gadau, Juergen (Committee member) / Hoelldobler, Bert (Committee member) / Liebig, Juergen (Committee member) / Arizona State University (Publisher)
Created2012
150818-Thumbnail Image.png
Description
While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria

While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria account for the majority of oxygen consumption during aerobic exercise, the primary goal was to investigate differences in isolated muscle mitochondria between these species and to examine to what extent factors intrinsic to mitochondria may account for the behavior observed in the intact tissue and whole organism. First, maximal enzyme activities were assessed in sparrow and rat mitochondria. Citrate synthase and aspartate aminotransferase activity were higher in sparrow compared to rat mitochondria, while glutamate dehydrogenase activity was lower. Sparrow mitochondrial NAD-linked isocitrate dehydrogenase activity was dependent on phosphate, unlike the mammalian enzyme. Next, the rate of oxygen consumption (JO), electron transport chain (ETC) activity, and reactive oxygen species (ROS) production were assessed in intact mitochondria. Maximal rates of fat oxidation were lower than for carbohydrate in rat but not sparrow mitochondria. ETC activity was higher in sparrows, but no differences were found in ROS production between species. Finally, fuel selection and control of respiration at three rates between rest and maximum were assessed. Mitochondrial fuel oxidation and selection mirrored that of the whole body; in rat mitochondria the reliance on carbohydrate increased as the rate of oxygen consumption increased, whereas fat dominated under all conditions in the sparrow. These data indicate fuel selection, at least in part, can be modulated at the level of the mitochondrial matrix when multiple substrates are present at saturating levels. As an increase in matrix oxidation-reduction potential has been linked to a suppression of fat oxidation and high ROS production, the high ETC activity relative to dehydrogenase activity in avian compared to mammalian mitochondria may result in lower matrix oxidation-reduction potential, allowing fatty acid oxidation to proceed while also resulting in low ROS production in vivo.
ContributorsKuzmiak, Sarah (Author) / Willis, Wayne T (Thesis advisor) / Mandarino, Lawrence (Committee member) / Sweazea, Karen (Committee member) / Harrison, Jon (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2012