Matching Items (245)
Filtering by

Clear all filters

150007-Thumbnail Image.png
Description
Current economic conditions necessitate the extension of service lives for a variety of aerospace systems. As a result, there is an increased need for structural health management (SHM) systems to increase safety, extend life, reduce maintenance costs, and minimize downtime, lowering life cycle costs for these aging systems. The implementation

Current economic conditions necessitate the extension of service lives for a variety of aerospace systems. As a result, there is an increased need for structural health management (SHM) systems to increase safety, extend life, reduce maintenance costs, and minimize downtime, lowering life cycle costs for these aging systems. The implementation of such a system requires a collaborative research effort in a variety of areas such as novel sensing techniques, robust algorithms for damage interrogation, high fidelity probabilistic progressive damage models, and hybrid residual life estimation models. This dissertation focuses on the sensing and damage estimation aspects of this multidisciplinary topic for application in metallic and composite material systems. The primary means of interrogating a structure in this work is through the use of Lamb wave propagation which works well for the thin structures used in aerospace applications. Piezoelectric transducers (PZTs) were selected for this application since they can be used as both sensors and actuators of guided waves. Placement of these transducers is an important issue in wave based approaches as Lamb waves are sensitive to changes in material properties, geometry, and boundary conditions which may obscure the presence of damage if they are not taken into account during sensor placement. The placement scheme proposed in this dissertation arranges piezoelectric transducers in a pitch-catch mode so the entire structure can be covered using a minimum number of sensors. The stress distribution of the structure is also considered so PZTs are placed in regions where they do not fail before the host structure. In order to process the data from these transducers, advanced signal processing techniques are employed to detect the presence of damage in complex structures. To provide a better estimate of the damage for accurate life estimation, machine learning techniques are used to classify the type of damage in the structure. A data structure analysis approach is used to reduce the amount of data collected and increase computational efficiency. In the case of low velocity impact damage, fiber Bragg grating (FBG) sensors were used with a nonlinear regression tool to reconstruct the loading at the impact site.
ContributorsCoelho, Clyde (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Wu, Tong (Committee member) / Das, Santanu (Committee member) / Rajadas, John (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2011
149993-Thumbnail Image.png
Description
Many products undergo several stages of testing ranging from tests on individual components to end-item tests. Additionally, these products may be further "tested" via customer or field use. The later failure of a delivered product may in some cases be due to circumstances that have no correlation with the product's

Many products undergo several stages of testing ranging from tests on individual components to end-item tests. Additionally, these products may be further "tested" via customer or field use. The later failure of a delivered product may in some cases be due to circumstances that have no correlation with the product's inherent quality. However, at times, there may be cues in the upstream test data that, if detected, could serve to predict the likelihood of downstream failure or performance degradation induced by product use or environmental stresses. This study explores the use of downstream factory test data or product field reliability data to infer data mining or pattern recognition criteria onto manufacturing process or upstream test data by means of support vector machines (SVM) in order to provide reliability prediction models. In concert with a risk/benefit analysis, these models can be utilized to drive improvement of the product or, at least, via screening to improve the reliability of the product delivered to the customer. Such models can be used to aid in reliability risk assessment based on detectable correlations between the product test performance and the sources of supply, test stands, or other factors related to product manufacture. As an enhancement to the usefulness of the SVM or hyperplane classifier within this context, L-moments and the Western Electric Company (WECO) Rules are used to augment or replace the native process or test data used as inputs to the classifier. As part of this research, a generalizable binary classification methodology was developed that can be used to design and implement predictors of end-item field failure or downstream product performance based on upstream test data that may be composed of single-parameter, time-series, or multivariate real-valued data. Additionally, the methodology provides input parameter weighting factors that have proved useful in failure analysis and root cause investigations as indicators of which of several upstream product parameters have the greater influence on the downstream failure outcomes.
ContributorsMosley, James (Author) / Morrell, Darryl (Committee member) / Cochran, Douglas (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Roberts, Chell (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2011
149995-Thumbnail Image.png
Description
A new arrangement of the Concerto for Two Horns in E-flat Major, Hob. VIId/6, attributed by some to Franz Joseph Haydn, is presented here. The arrangement reduces the orchestral portion to ten wind instruments, specifically a double wind quintet, to facilitate performance of the work. A full score and a

A new arrangement of the Concerto for Two Horns in E-flat Major, Hob. VIId/6, attributed by some to Franz Joseph Haydn, is presented here. The arrangement reduces the orchestral portion to ten wind instruments, specifically a double wind quintet, to facilitate performance of the work. A full score and a complete set of parts are included. In support of this new arrangement, a discussion of the early treatment of horns in pairs and the subsequent development of the double horn concerto in the eighteenth century provides historical context for the Concerto for Two Horns in E-flat major. A summary of the controversy concerning the identity of the composer of this concerto is followed by a description of the content and structure of each of its three movements. Some comments on the procedures of the arrangement complete the background information.
ContributorsYeh, Guan-Lin (Author) / Ericson, John (Thesis advisor) / Holbrook, Amy (Committee member) / Micklich, Albie (Committee member) / Pilafian, J. Samuel (Committee member) / Arizona State University (Publisher)
Created2011
Description
The purpose of this project was to commission, perform, and discuss a new work for an instrument pairing not often utilized, oboe and percussion. The composer, Alyssa Morris, was selected in June 2009. Her work, titled Forecast, was completed in October of 2009 and premiered in February of 2010, as

The purpose of this project was to commission, perform, and discuss a new work for an instrument pairing not often utilized, oboe and percussion. The composer, Alyssa Morris, was selected in June 2009. Her work, titled Forecast, was completed in October of 2009 and premiered in February of 2010, as part of a program showcasing music for oboe and percussion. Included in this document is a detailed biography of the composer, a description of the four movements of Forecast, performance notes for each movement, a diagram for stage set-up, the full score, the program from the premiere performance with biographies of all the performers involved, and both a live recording and MIDI sound file. The performance notes discuss issues that arose during preparation for the premiere and should help avoid potential pitfalls. TrevCo Music, publisher of the work, graciously allowed inclusion of the full score. This score is solely for use in this document; please visit the publisher's website for purchasing information. The commission and documentation of this composition are intended to add to the repertoire for oboe in an unusual instrument pairing and to encourage further exploration of such combinations.
ContributorsCreamer, Caryn (Author) / Schuring, Martin (Thesis advisor) / Hill, Gary (Committee member) / Holbrook, Amy (Committee member) / Micklich, Albie (Committee member) / Spring, Robert (Committee member) / Arizona State University (Publisher)
Created2011
150398-Thumbnail Image.png
Description
Underwater acoustic communications face significant challenges unprecedented in radio terrestrial communications including long multipath delay spreads, strong Doppler effects, and stringent bandwidth requirements. Recently, multi-carrier communications based on orthogonal frequency division multiplexing (OFDM) have seen significant growth in underwater acoustic (UWA) communications, thanks to their well well-known robustness against severely

Underwater acoustic communications face significant challenges unprecedented in radio terrestrial communications including long multipath delay spreads, strong Doppler effects, and stringent bandwidth requirements. Recently, multi-carrier communications based on orthogonal frequency division multiplexing (OFDM) have seen significant growth in underwater acoustic (UWA) communications, thanks to their well well-known robustness against severely time-dispersive channels. However, the performance of OFDM systems over UWA channels significantly deteriorates due to severe intercarrier interference (ICI) resulting from rapid time variations of the channel. With the motivation of developing enabling techniques for OFDM over UWA channels, the major contributions of this thesis include (1) two effective frequencydomain equalizers that provide general means to counteract the ICI; (2) a family of multiple-resampling receiver designs dealing with distortions caused by user and/or path specific Doppler scaling effects; (3) proposal of using orthogonal frequency division multiple access (OFDMA) as an effective multiple access scheme for UWA communications; (4) the capacity evaluation for single-resampling versus multiple-resampling receiver designs. All of the proposed receiver designs have been verified both through simulations and emulations based on data collected in real-life UWA communications experiments. Particularly, the frequency domain equalizers are shown to be effective with significantly reduced pilot overhead and offer robustness against Doppler and timing estimation errors. The multiple-resampling designs, where each branch is tasked with the Doppler distortion of different paths and/or users, overcome the disadvantages of the commonly-used single-resampling receivers and yield significant performance gains. Multiple-resampling receivers are also demonstrated to be necessary for UWA OFDMA systems. The unique design effectively mitigates interuser interference (IUI), opening up the possibility to exploit advanced user subcarrier assignment schemes. Finally, the benefits of the multiple-resampling receivers are further demonstrated through channel capacity evaluation results.
ContributorsTu, Kai (Author) / Duman, Tolga M. (Thesis advisor) / Zhang, Junshan (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2011
149867-Thumbnail Image.png
Description
Following the success in incorporating perceptual models in audio coding algorithms, their application in other speech/audio processing systems is expanding. In general, all perceptual speech/audio processing algorithms involve minimization of an objective function that directly/indirectly incorporates properties of human perception. This dissertation primarily investigates the problems associated with directly embedding

Following the success in incorporating perceptual models in audio coding algorithms, their application in other speech/audio processing systems is expanding. In general, all perceptual speech/audio processing algorithms involve minimization of an objective function that directly/indirectly incorporates properties of human perception. This dissertation primarily investigates the problems associated with directly embedding an auditory model in the objective function formulation and proposes possible solutions to overcome high complexity issues for use in real-time speech/audio algorithms. Specific problems addressed in this dissertation include: 1) the development of approximate but computationally efficient auditory model implementations that are consistent with the principles of psychoacoustics, 2) the development of a mapping scheme that allows synthesizing a time/frequency domain representation from its equivalent auditory model output. The first problem is aimed at addressing the high computational complexity involved in solving perceptual objective functions that require repeated application of auditory model for evaluation of different candidate solutions. In this dissertation, a frequency pruning and a detector pruning algorithm is developed that efficiently implements the various auditory model stages. The performance of the pruned model is compared to that of the original auditory model for different types of test signals in the SQAM database. Experimental results indicate only a 4-7% relative error in loudness while attaining up to 80-90 % reduction in computational complexity. Similarly, a hybrid algorithm is developed specifically for use with sinusoidal signals and employs the proposed auditory pattern combining technique together with a look-up table to store representative auditory patterns. The second problem obtains an estimate of the auditory representation that minimizes a perceptual objective function and transforms the auditory pattern back to its equivalent time/frequency representation. This avoids the repeated application of auditory model stages to test different candidate time/frequency vectors in minimizing perceptual objective functions. In this dissertation, a constrained mapping scheme is developed by linearizing certain auditory model stages that ensures obtaining a time/frequency mapping corresponding to the estimated auditory representation. This paradigm was successfully incorporated in a perceptual speech enhancement algorithm and a sinusoidal component selection task.
ContributorsKrishnamoorthi, Harish (Author) / Spanias, Andreas (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2011
149826-Thumbnail Image.png
Description
ABSTRACT &eacutetudes; written for violin ensemble, which include violin duets, trios, and quartets, are less numerous than solo &eacutetudes.; These works rarely go by the title "&eacutetude;," and have not been the focus of much scholarly research. Ensemble &eacutetudes; have much to offer students, teachers and

ABSTRACT &eacutetudes; written for violin ensemble, which include violin duets, trios, and quartets, are less numerous than solo &eacutetudes.; These works rarely go by the title "&eacutetude;," and have not been the focus of much scholarly research. Ensemble &eacutetudes; have much to offer students, teachers and composers, however, because they add an extra dimension to the learning, teaching, and composing processes. This document establishes the value of ensemble &eacutetudes; in pedagogy and explores applications of the repertoire currently available. Rather than focus on violin duets, the most common form of ensemble &eacutetude;, it mainly considers works for three and four violins without accompaniment. Concentrating on the pedagogical possibilities of studying &eacutetudes; in a group, this document introduces creative ways that works for violin ensemble can be used as both &eacutetudes; and performance pieces. The first two chapters explore the history and philosophy of the violin &eacutetude; and multiple-violin works, the practice of arranging of solo &eacutetudes; for multiple instruments, and the benefits of group learning and cooperative learning that distinguish ensemble &eacutetude; study from solo &eacutetude; study. The third chapter is an annotated survey of works for three and four violins without accompaniment, and serves as a pedagogical guide to some of the available repertoire. Representing a wide variety of styles, techniques and levels, it illuminates an historical association between violin ensemble works and pedagogy. The fourth chapter presents an original composition by the author, titled Variations on a Scottish Folk Song: &eacutetude; for Four Violins, with an explanation of the process and techniques used to create this ensemble &eacutetude.; This work is an example of the musical and technical integration essential to &eacutetude; study, and demonstrates various compositional traits that promote cooperative learning. Ensemble &eacutetudes; are valuable pedagogical tools that deserve wider exposure. It is my hope that the information and ideas about ensemble &eacutetudes; in this paper and the individual descriptions of the works presented will increase interest in and application of violin trios and quartets at the university level.
ContributorsLundell, Eva Rachel (Contributor) / Swartz, Jonathan (Thesis advisor) / Rockmaker, Jody (Committee member) / Buck, Nancy (Committee member) / Koonce, Frank (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2011
149808-Thumbnail Image.png
Description
Finger motion and hand posture of six professional clarinetists (defined by entrance into or completion of a doctorate of musical arts degree in clarinet performance) were recorded using a pair of CyberGloves® in Arizona State University's Center for Cognitive Ubiquitous Computing Laboratory. Performance tasks included performing a slurred three-octave chromatic

Finger motion and hand posture of six professional clarinetists (defined by entrance into or completion of a doctorate of musical arts degree in clarinet performance) were recorded using a pair of CyberGloves® in Arizona State University's Center for Cognitive Ubiquitous Computing Laboratory. Performance tasks included performing a slurred three-octave chromatic scale in sixteenth notes, at sixty quarter-note beats per minute, three times, with a metronome and a short pause between repetitions, and forming three pedagogical hand postures. Following the CyberGloves® tasks, each subject completed a questionnaire about equipment, playing history, practice routines, health practices, and hand usage during computer and sports activities. CyberGlove® data were analyzed to find average hand/finger postures and differences for each pitch across subjects, subject variance in the performance task and differences in ascending and descending postures of the chromatic scale. The data were also analyzed to describe generalized finger posture characteristics based on hand size, whether right hand thumb position affects finger flexion, and whether professional clarinetists use similar finger/hand postures when performing on clarinet, holding a tennis ball, allowing hands to hang freely by the sides, or form a "C" shape. The findings of this study suggest an individual approach based on hand size is necessary for teaching clarinet hand posture.
ContributorsHarger, Stefanie (Author) / Spring, Robert (Thesis advisor) / Hill, Gary (Committee member) / Koonce, Frank (Committee member) / Norton, Kay (Committee member) / Stauffer, Sandy (Committee member) / Arizona State University (Publisher)
Created2011
Description
Owen Middleton (b. 1941) enjoys an established and growing reputation as a composer of classical guitar music, but his works for piano are comparatively little known. The close investigation offered here of Middleton's works for piano reveals the same impressive craftsmanship, compelling character, and innovative spirit found in his works

Owen Middleton (b. 1941) enjoys an established and growing reputation as a composer of classical guitar music, but his works for piano are comparatively little known. The close investigation offered here of Middleton's works for piano reveals the same impressive craftsmanship, compelling character, and innovative spirit found in his works for guitar. Indeed, the only significant thing Middleton's piano music currently lacks is the well-deserved attention of professional players and a wider audience. Middleton's piano music needs to be heard, not just discussed, so one of this document's purposes is to provide a recorded sample of his piano works. While the overall repertoire for solo piano is vast, and new works become established in that repertoire with increasing difficulty, Middleton's piano works have a significant potential to find their way into the concert hall as well as the private teaching studio. His solo piano music is highly effective, well suited to the instrument, and, perhaps most importantly, fresh sounding and truly original. His pedagogical works are of equal value. Middleton's piano music offers something for everyone: there one finds daring virtuosity, effusions of passion, intellectual force, colorful imagery, poetry, humor, and even a degree of idiomatic innovation. This study aims to reveal key aspects of the composer's musical style, especially his style of piano writing, and to provide pianists with helpful analytical, technical, and interpretive insights. These descriptions of the music are supported with recorded examples, selected from the works for solo piano written between 1962 and 1993: Sonata for Piano, Childhood Scenes, Katie's Collection, and Toccata for Piano. The complete scores of the recorded works are included in the appendix. A chapter briefly describing the piano pieces since 1993 concludes the study and invites the reader to further investigations of this unique and important body of work.
ContributorsMoreau, Barton Andrew (Author) / Hamilton, Robert (Thesis advisor) / Holbrook, Amy (Committee member) / Campbell, Andrew (Committee member) / Spring, Robert (Committee member) / Gardner, Joshua (Committee member) / Arizona State University (Publisher)
Created2011
150187-Thumbnail Image.png
Description
Genomic and proteomic sequences, which are in the form of deoxyribonucleic acid (DNA) and amino acids respectively, play a vital role in the structure, function and diversity of every living cell. As a result, various genomic and proteomic sequence processing methods have been proposed from diverse disciplines, including biology, chemistry,

Genomic and proteomic sequences, which are in the form of deoxyribonucleic acid (DNA) and amino acids respectively, play a vital role in the structure, function and diversity of every living cell. As a result, various genomic and proteomic sequence processing methods have been proposed from diverse disciplines, including biology, chemistry, physics, computer science and electrical engineering. In particular, signal processing techniques were applied to the problems of sequence querying and alignment, that compare and classify regions of similarity in the sequences based on their composition. However, although current approaches obtain results that can be attributed to key biological properties, they require pre-processing and lack robustness to sequence repetitions. In addition, these approaches do not provide much support for efficiently querying sub-sequences, a process that is essential for tracking localized database matches. In this work, a query-based alignment method for biological sequences that maps sequences to time-domain waveforms before processing the waveforms for alignment in the time-frequency plane is first proposed. The mapping uses waveforms, such as time-domain Gaussian functions, with unique sequence representations in the time-frequency plane. The proposed alignment method employs a robust querying algorithm that utilizes a time-frequency signal expansion whose basis function is matched to the basic waveform in the mapped sequences. The resulting WAVEQuery approach is demonstrated for both DNA and protein sequences using the matching pursuit decomposition as the signal basis expansion. The alignment localization of WAVEQuery is specifically evaluated over repetitive database segments, and operable in real-time without pre-processing. It is demonstrated that WAVEQuery significantly outperforms the biological sequence alignment method BLAST for queries with repetitive segments for DNA sequences. A generalized version of the WAVEQuery approach with the metaplectic transform is also described for protein sequence structure prediction. For protein alignment, it is often necessary to not only compare the one-dimensional (1-D) primary sequence structure but also the secondary and tertiary three-dimensional (3-D) space structures. This is done after considering the conformations in the 3-D space due to the degrees of freedom of these structures. As a result, a novel directionality based 3-D waveform mapping for the 3-D protein structures is also proposed and it is used to compare protein structures using a matched filter approach. By incorporating a 3-D time axis, a highly-localized Gaussian-windowed chirp waveform is defined, and the amino acid information is mapped to the chirp parameters that are then directly used to obtain directionality in the 3-D space. This mapping is unique in that additional characteristic protein information such as hydrophobicity, that relates the sequence with the structure, can be added as another representation parameter. The additional parameter helps tracking similarities over local segments of the structure, this enabling classification of distantly related proteins which have partial structural similarities. This approach is successfully tested for pairwise alignments over full length structures, alignments over multiple structures to form a phylogenetic trees, and also alignments over local segments. Also, basic classification over protein structural classes using directional descriptors for the protein structure is performed.
ContributorsRavichandran, Lakshminarayan (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Spanias, Andreas S (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Lacroix, Zoé (Committee member) / Arizona State University (Publisher)
Created2011