Matching Items (8)
Filtering by

Clear all filters

152531-Thumbnail Image.png
Description
Persistence theory provides a mathematically rigorous answer to the question of population survival by establishing an initial-condition- independent positive lower bound for the long-term value of the population size. This study focuses on the persistence of discrete semiflows in infinite-dimensional state spaces that model the year-to-year dynamics of structured populations.

Persistence theory provides a mathematically rigorous answer to the question of population survival by establishing an initial-condition- independent positive lower bound for the long-term value of the population size. This study focuses on the persistence of discrete semiflows in infinite-dimensional state spaces that model the year-to-year dynamics of structured populations. The map which encapsulates the population development from one year to the next is approximated at the origin (the extinction state) by a linear or homogeneous map. The (cone) spectral radius of this approximating map is the threshold between extinction and persistence. General persistence results are applied to three particular models: a size-structured plant population model, a diffusion model (with both Neumann and Dirichlet boundary conditions) for a dispersing population of males and females that only mate and reproduce once during a very short season, and a rank-structured model for a population of males and females.
ContributorsJin, Wen (Author) / Thieme, Horst (Thesis advisor) / Milner, Fabio (Committee member) / Quigg, John (Committee member) / Smith, Hal (Committee member) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2014
149906-Thumbnail Image.png
Description
In this thesis, I investigate the C*-algebras and related constructions that arise from combinatorial structures such as directed graphs and their generalizations. I give a complete characterization of the C*-correspondences associated to directed graphs as well as results about obstructions to a similar characterization of these objects for generalizations of

In this thesis, I investigate the C*-algebras and related constructions that arise from combinatorial structures such as directed graphs and their generalizations. I give a complete characterization of the C*-correspondences associated to directed graphs as well as results about obstructions to a similar characterization of these objects for generalizations of directed graphs. Viewing the higher-dimensional analogues of directed graphs through the lens of product systems, I give a rigorous proof that topological k-graphs are essentially product systems over N^k of topological graphs. I introduce a "compactly aligned" condition for such product systems of graphs and show that this coincides with the similarly-named conditions for topological k-graphs and for the associated product systems over N^k of C*-correspondences. Finally I consider the constructions arising from topological dynamical systems consisting of a locally compact Hausdorff space and k commuting local homeomorphisms. I show that in this case, the associated topological k-graph correspondence is isomorphic to the product system over N^k of C*-correspondences arising from a related Exel-Larsen system. Moreover, I show that the topological k-graph C*-algebra has a crossed product structure in the sense of Larsen.
ContributorsPatani, Nura (Author) / Kaliszewski, Steven (Thesis advisor) / Quigg, John (Thesis advisor) / Bremner, Andrew (Committee member) / Kawski, Matthias (Committee member) / Spielberg, John (Committee member) / Arizona State University (Publisher)
Created2011
150182-Thumbnail Image.png
Description
The theory of geometric quantum mechanics describes a quantum system as a Hamiltonian dynamical system, with a projective Hilbert space regarded as the phase space. This thesis extends the theory by including some aspects of the symplectic topology of the quantum phase space. It is shown that the quantum mechanical

The theory of geometric quantum mechanics describes a quantum system as a Hamiltonian dynamical system, with a projective Hilbert space regarded as the phase space. This thesis extends the theory by including some aspects of the symplectic topology of the quantum phase space. It is shown that the quantum mechanical uncertainty principle is a special case of an inequality from J-holomorphic map theory, that is, J-holomorphic curves minimize the difference between the quantum covariance matrix determinant and a symplectic area. An immediate consequence is that a minimal determinant is a topological invariant, within a fixed homology class of the curve. Various choices of quantum operators are studied with reference to the implications of the J-holomorphic condition. The mean curvature vector field and Maslov class are calculated for a lagrangian torus of an integrable quantum system. The mean curvature one-form is simply related to the canonical connection which determines the geometric phases and polarization linear response. Adiabatic deformations of a quantum system are analyzed in terms of vector bundle classifying maps and related to the mean curvature flow of quantum states. The dielectric response function for a periodic solid is calculated to be the curvature of a connection on a vector bundle.
ContributorsSanborn, Barbara (Author) / Suslov, Sergei K (Thesis advisor) / Suslov, Sergei (Committee member) / Spielberg, John (Committee member) / Quigg, John (Committee member) / Menéndez, Jose (Committee member) / Jones, Donald (Committee member) / Arizona State University (Publisher)
Created2011
157261-Thumbnail Image.png
Description
Diophantine arithmetic is one of the oldest branches of mathematics, the search

for integer or rational solutions of algebraic equations. Pythagorean triangles are

an early instance. Diophantus of Alexandria wrote the first related treatise in the

fourth century; it was an area extensively studied by the great mathematicians of the seventeenth

Diophantine arithmetic is one of the oldest branches of mathematics, the search

for integer or rational solutions of algebraic equations. Pythagorean triangles are

an early instance. Diophantus of Alexandria wrote the first related treatise in the

fourth century; it was an area extensively studied by the great mathematicians of the seventeenth century, including Euler and Fermat.

The modern approach is to treat the equations as defining geometric objects, curves, surfaces, etc. The theory of elliptic curves (or curves of genus 1, which are much used in modern cryptography) was developed extensively in the twentieth century, and has had great application to Diophantine equations. This theory is used in application to the problems studied in this thesis. This thesis studies some curves of high genus, and possible solutions in both rationals and in algebraic number fields, generalizes some old results and gives answers to some open problems in the literature. The methods involve known techniques together with some ingenious tricks. For example, the equations $y^2=x^6+k$, $k=-39,\,-47$, the two previously unsolved cases for $|k|<50$, are solved using algebraic number theory and the ‘elliptic Chabauty’ method. The thesis also studies the genus three quartic curves $F(x^2,y^2,z^2)=0$ where F is a homogeneous quadratic form, and extend old results of Cassels, and Bremner. It is a very delicate matter to find such curves that have no rational points, yet which do have points in odd-degree extension fields of the rationals.

The principal results of the thesis are related to surfaces where the theory is much less well known. In particular, the thesis studies some specific families of surfaces, and give a negative answer to a question in the literature regarding representation of integers n in the form $n=(x+y+z+w)(1/x+1/y+1/z+1/w).$ Further, an example, the first such known, of a quartic surface $x^4+7y^4=14z^4+18w^4$ is given with remarkable properties: it is everywhere locally solvable, yet has no non-zero rational point, despite having a point in (non-trivial) odd-degree extension fields of the rationals. The ideas here involve manipulation of the Hilbert symbol, together with the theory of elliptic curves.
ContributorsNguyen, Xuan Tho (Author) / Bremner, Andrew (Thesis advisor) / Childress, Nancy (Committee member) / Jones, John (Committee member) / Quigg, John (Committee member) / Fishel, Susanna (Committee member) / Arizona State University (Publisher)
Created2019
161734-Thumbnail Image.png
Description
This thesis presents a categorical approach to recover and extend some well-known results from the theory of $C^*$-correspondences. First, a detailed study on \emph{the enchilada category} is given. In this category, the objects are $C^*$-algebras, and morphisms are isomorphism classes of $C^*$-correspondences. In the \emph{equivariant enchilada category} $\mathcal{A}(C)$, all objects

This thesis presents a categorical approach to recover and extend some well-known results from the theory of $C^*$-correspondences. First, a detailed study on \emph{the enchilada category} is given. In this category, the objects are $C^*$-algebras, and morphisms are isomorphism classes of $C^*$-correspondences. In the \emph{equivariant enchilada category} $\mathcal{A}(C)$, all objects and morphisms are equipped with a locally compact group action satisfying certain conditions. These categories were used by Echterhoff, Kaliszweski, Quigg, and Raeburn for a study regarding a very fundamental tool to the representation theory: imprimitivity theorems. This work contains a construction of exact sequences in enchilada categories. One of the main results is that the reduced-crossed-product functor defined from $\mathcal{A}(C)$ to the enchilada category is not exact. The motivation was to determine whether one can have a better understanding of the Baum-Connes conjecture. Along the way numerous results are proven, showing that the enchilada category is rather strange. The next main study regards the functoriality of Cuntz-Pimsner algebras. A construction of a functor that maps $C^*$-correspondences to their Cuntz-Pimsner algebras is presented. The objects in the domain category are $C^*$-correspondences, and the morphisms are the isomorphism classes of $C^*$-correspondences satisfying certain conditions. Applications include a generalization of the well-known result of Muhly and Solel: Morita equivalent $C^*$-correspondences have Morita equivalent Cuntz-Pimsner algebras; as well as a generalization of the result of Kakariadis and Katsoulis: Regular shift equivalent $C^*$-correspondences have Morita equivalent Cuntz-Pimsner algebras.
ContributorsERYUZLU, MENEVSE (Author) / Quigg, John (Thesis advisor) / Kalszewski, Steven (Committee member) / Spielberg, Jack (Committee member) / Williams, Dana (Committee member) / Larsen, Nadia (Committee member) / Arizona State University (Publisher)
Created2021
171758-Thumbnail Image.png
Description
The author employs bundle theory to investigate dynamics on C*- algebras. Using methods old and new to define dynamics on topological spaces (often with additional structure), implications of the dynamics are investigated in the non-commutative setting, and in suitable situations the dynamics are classified. As a result, new Morita equivalence

The author employs bundle theory to investigate dynamics on C*- algebras. Using methods old and new to define dynamics on topological spaces (often with additional structure), implications of the dynamics are investigated in the non-commutative setting, and in suitable situations the dynamics are classified. As a result, new Morita equivalence results are derived and new settings introduced in the study of crossed products, whether by group coactions or by actions of groups and groupoids.
ContributorsHall, Lucas (Author) / Quigg, John (Thesis advisor) / Kaliszewski, S. (Committee member) / Spielberg, Jack (Committee member) / Paupert, Julien (Committee member) / Kotschwar, Brett (Committee member) / Arizona State University (Publisher)
Created2022
154345-Thumbnail Image.png
Description
This dissertation contains three main results. First, a generalization of Ionescu's theorem is proven. Ionescu's theorem describes an unexpected connection between graph C*-algebras and fractal geometry. In this work, this theorem is extended from ordinary directed graphs to

This dissertation contains three main results. First, a generalization of Ionescu's theorem is proven. Ionescu's theorem describes an unexpected connection between graph C*-algebras and fractal geometry. In this work, this theorem is extended from ordinary directed graphs to higher-rank graphs. Second, a characterization is given of the Cuntz-Pimsner algebra associated to a tensor product of C*-correspondences. This is a generalization of a result by Kumjian about graphs algebras. This second result is applied to several important special cases of Cuntz-Pimsner algebras including topological graph algebras, crossed products by the integers and crossed products by completely positive maps. The result has meaningful interpretations in each context. The third result is an extension of the second result from an ordinary tensor product to a special case of Woronowicz's twisted tensor product. This result simultaneously characterizes Cuntz-Pimsner algebras of ordinary and graded tensor products and Cuntz-Pimsner algebras of crossed products by actions and coactions of discrete groups, the latter partially recovering earlier results of Hao and Ng and of Kaliszewski, Quigg and Robertson.
ContributorsMorgan, Adam (Author) / Kaliszewski, Steven (Thesis advisor) / Quigg, John (Thesis advisor) / Spielberg, Jack (Committee member) / Kawski, Matthias (Committee member) / Kotschwar, Brett (Committee member) / Arizona State University (Publisher)
Created2016
158200-Thumbnail Image.png
Description
C*-algebras of categories of paths were introduced by Spielberg in 2014 and generalize C*-algebras of higher rank graphs. An approximately finite dimensional (AF) C*-algebra is one which is isomorphic to an inductive limit of finite dimensional C*-algebras. In 2012, D.G. Evans and A. Sims proposed an analogue of a cycle

C*-algebras of categories of paths were introduced by Spielberg in 2014 and generalize C*-algebras of higher rank graphs. An approximately finite dimensional (AF) C*-algebra is one which is isomorphic to an inductive limit of finite dimensional C*-algebras. In 2012, D.G. Evans and A. Sims proposed an analogue of a cycle for higher rank graphs and show that the lack of such an object is necessary for the associated C*-algebra to be AF. Here, I give a class of examples of categories of paths whose associated C*-algebras are Morita equivalent to a large number of periodic continued fraction AF algebras, first described by Effros and Shen in 1980. I then provide two examples which show that the analogue of cycles proposed by Evans and Sims is neither a necessary nor a sufficient condition for the C*-algebra of a category of paths to be AF.
ContributorsMitscher, Ian (Author) / Spielberg, John (Thesis advisor) / Bremner, Andrew (Committee member) / Kalizsewski, Steven (Committee member) / Kawski, Matthias (Committee member) / Quigg, John (Committee member) / Arizona State University (Publisher)
Created2020