Matching Items (70)
Filtering by

Clear all filters

150007-Thumbnail Image.png
Description
Current economic conditions necessitate the extension of service lives for a variety of aerospace systems. As a result, there is an increased need for structural health management (SHM) systems to increase safety, extend life, reduce maintenance costs, and minimize downtime, lowering life cycle costs for these aging systems. The implementation

Current economic conditions necessitate the extension of service lives for a variety of aerospace systems. As a result, there is an increased need for structural health management (SHM) systems to increase safety, extend life, reduce maintenance costs, and minimize downtime, lowering life cycle costs for these aging systems. The implementation of such a system requires a collaborative research effort in a variety of areas such as novel sensing techniques, robust algorithms for damage interrogation, high fidelity probabilistic progressive damage models, and hybrid residual life estimation models. This dissertation focuses on the sensing and damage estimation aspects of this multidisciplinary topic for application in metallic and composite material systems. The primary means of interrogating a structure in this work is through the use of Lamb wave propagation which works well for the thin structures used in aerospace applications. Piezoelectric transducers (PZTs) were selected for this application since they can be used as both sensors and actuators of guided waves. Placement of these transducers is an important issue in wave based approaches as Lamb waves are sensitive to changes in material properties, geometry, and boundary conditions which may obscure the presence of damage if they are not taken into account during sensor placement. The placement scheme proposed in this dissertation arranges piezoelectric transducers in a pitch-catch mode so the entire structure can be covered using a minimum number of sensors. The stress distribution of the structure is also considered so PZTs are placed in regions where they do not fail before the host structure. In order to process the data from these transducers, advanced signal processing techniques are employed to detect the presence of damage in complex structures. To provide a better estimate of the damage for accurate life estimation, machine learning techniques are used to classify the type of damage in the structure. A data structure analysis approach is used to reduce the amount of data collected and increase computational efficiency. In the case of low velocity impact damage, fiber Bragg grating (FBG) sensors were used with a nonlinear regression tool to reconstruct the loading at the impact site.
ContributorsCoelho, Clyde (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Wu, Tong (Committee member) / Das, Santanu (Committee member) / Rajadas, John (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2011
149993-Thumbnail Image.png
Description
Many products undergo several stages of testing ranging from tests on individual components to end-item tests. Additionally, these products may be further "tested" via customer or field use. The later failure of a delivered product may in some cases be due to circumstances that have no correlation with the product's

Many products undergo several stages of testing ranging from tests on individual components to end-item tests. Additionally, these products may be further "tested" via customer or field use. The later failure of a delivered product may in some cases be due to circumstances that have no correlation with the product's inherent quality. However, at times, there may be cues in the upstream test data that, if detected, could serve to predict the likelihood of downstream failure or performance degradation induced by product use or environmental stresses. This study explores the use of downstream factory test data or product field reliability data to infer data mining or pattern recognition criteria onto manufacturing process or upstream test data by means of support vector machines (SVM) in order to provide reliability prediction models. In concert with a risk/benefit analysis, these models can be utilized to drive improvement of the product or, at least, via screening to improve the reliability of the product delivered to the customer. Such models can be used to aid in reliability risk assessment based on detectable correlations between the product test performance and the sources of supply, test stands, or other factors related to product manufacture. As an enhancement to the usefulness of the SVM or hyperplane classifier within this context, L-moments and the Western Electric Company (WECO) Rules are used to augment or replace the native process or test data used as inputs to the classifier. As part of this research, a generalizable binary classification methodology was developed that can be used to design and implement predictors of end-item field failure or downstream product performance based on upstream test data that may be composed of single-parameter, time-series, or multivariate real-valued data. Additionally, the methodology provides input parameter weighting factors that have proved useful in failure analysis and root cause investigations as indicators of which of several upstream product parameters have the greater influence on the downstream failure outcomes.
ContributorsMosley, James (Author) / Morrell, Darryl (Committee member) / Cochran, Douglas (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Roberts, Chell (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2011
150398-Thumbnail Image.png
Description
Underwater acoustic communications face significant challenges unprecedented in radio terrestrial communications including long multipath delay spreads, strong Doppler effects, and stringent bandwidth requirements. Recently, multi-carrier communications based on orthogonal frequency division multiplexing (OFDM) have seen significant growth in underwater acoustic (UWA) communications, thanks to their well well-known robustness against severely

Underwater acoustic communications face significant challenges unprecedented in radio terrestrial communications including long multipath delay spreads, strong Doppler effects, and stringent bandwidth requirements. Recently, multi-carrier communications based on orthogonal frequency division multiplexing (OFDM) have seen significant growth in underwater acoustic (UWA) communications, thanks to their well well-known robustness against severely time-dispersive channels. However, the performance of OFDM systems over UWA channels significantly deteriorates due to severe intercarrier interference (ICI) resulting from rapid time variations of the channel. With the motivation of developing enabling techniques for OFDM over UWA channels, the major contributions of this thesis include (1) two effective frequencydomain equalizers that provide general means to counteract the ICI; (2) a family of multiple-resampling receiver designs dealing with distortions caused by user and/or path specific Doppler scaling effects; (3) proposal of using orthogonal frequency division multiple access (OFDMA) as an effective multiple access scheme for UWA communications; (4) the capacity evaluation for single-resampling versus multiple-resampling receiver designs. All of the proposed receiver designs have been verified both through simulations and emulations based on data collected in real-life UWA communications experiments. Particularly, the frequency domain equalizers are shown to be effective with significantly reduced pilot overhead and offer robustness against Doppler and timing estimation errors. The multiple-resampling designs, where each branch is tasked with the Doppler distortion of different paths and/or users, overcome the disadvantages of the commonly-used single-resampling receivers and yield significant performance gains. Multiple-resampling receivers are also demonstrated to be necessary for UWA OFDMA systems. The unique design effectively mitigates interuser interference (IUI), opening up the possibility to exploit advanced user subcarrier assignment schemes. Finally, the benefits of the multiple-resampling receivers are further demonstrated through channel capacity evaluation results.
ContributorsTu, Kai (Author) / Duman, Tolga M. (Thesis advisor) / Zhang, Junshan (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2011
149867-Thumbnail Image.png
Description
Following the success in incorporating perceptual models in audio coding algorithms, their application in other speech/audio processing systems is expanding. In general, all perceptual speech/audio processing algorithms involve minimization of an objective function that directly/indirectly incorporates properties of human perception. This dissertation primarily investigates the problems associated with directly embedding

Following the success in incorporating perceptual models in audio coding algorithms, their application in other speech/audio processing systems is expanding. In general, all perceptual speech/audio processing algorithms involve minimization of an objective function that directly/indirectly incorporates properties of human perception. This dissertation primarily investigates the problems associated with directly embedding an auditory model in the objective function formulation and proposes possible solutions to overcome high complexity issues for use in real-time speech/audio algorithms. Specific problems addressed in this dissertation include: 1) the development of approximate but computationally efficient auditory model implementations that are consistent with the principles of psychoacoustics, 2) the development of a mapping scheme that allows synthesizing a time/frequency domain representation from its equivalent auditory model output. The first problem is aimed at addressing the high computational complexity involved in solving perceptual objective functions that require repeated application of auditory model for evaluation of different candidate solutions. In this dissertation, a frequency pruning and a detector pruning algorithm is developed that efficiently implements the various auditory model stages. The performance of the pruned model is compared to that of the original auditory model for different types of test signals in the SQAM database. Experimental results indicate only a 4-7% relative error in loudness while attaining up to 80-90 % reduction in computational complexity. Similarly, a hybrid algorithm is developed specifically for use with sinusoidal signals and employs the proposed auditory pattern combining technique together with a look-up table to store representative auditory patterns. The second problem obtains an estimate of the auditory representation that minimizes a perceptual objective function and transforms the auditory pattern back to its equivalent time/frequency representation. This avoids the repeated application of auditory model stages to test different candidate time/frequency vectors in minimizing perceptual objective functions. In this dissertation, a constrained mapping scheme is developed by linearizing certain auditory model stages that ensures obtaining a time/frequency mapping corresponding to the estimated auditory representation. This paradigm was successfully incorporated in a perceptual speech enhancement algorithm and a sinusoidal component selection task.
ContributorsKrishnamoorthi, Harish (Author) / Spanias, Andreas (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2011
150187-Thumbnail Image.png
Description
Genomic and proteomic sequences, which are in the form of deoxyribonucleic acid (DNA) and amino acids respectively, play a vital role in the structure, function and diversity of every living cell. As a result, various genomic and proteomic sequence processing methods have been proposed from diverse disciplines, including biology, chemistry,

Genomic and proteomic sequences, which are in the form of deoxyribonucleic acid (DNA) and amino acids respectively, play a vital role in the structure, function and diversity of every living cell. As a result, various genomic and proteomic sequence processing methods have been proposed from diverse disciplines, including biology, chemistry, physics, computer science and electrical engineering. In particular, signal processing techniques were applied to the problems of sequence querying and alignment, that compare and classify regions of similarity in the sequences based on their composition. However, although current approaches obtain results that can be attributed to key biological properties, they require pre-processing and lack robustness to sequence repetitions. In addition, these approaches do not provide much support for efficiently querying sub-sequences, a process that is essential for tracking localized database matches. In this work, a query-based alignment method for biological sequences that maps sequences to time-domain waveforms before processing the waveforms for alignment in the time-frequency plane is first proposed. The mapping uses waveforms, such as time-domain Gaussian functions, with unique sequence representations in the time-frequency plane. The proposed alignment method employs a robust querying algorithm that utilizes a time-frequency signal expansion whose basis function is matched to the basic waveform in the mapped sequences. The resulting WAVEQuery approach is demonstrated for both DNA and protein sequences using the matching pursuit decomposition as the signal basis expansion. The alignment localization of WAVEQuery is specifically evaluated over repetitive database segments, and operable in real-time without pre-processing. It is demonstrated that WAVEQuery significantly outperforms the biological sequence alignment method BLAST for queries with repetitive segments for DNA sequences. A generalized version of the WAVEQuery approach with the metaplectic transform is also described for protein sequence structure prediction. For protein alignment, it is often necessary to not only compare the one-dimensional (1-D) primary sequence structure but also the secondary and tertiary three-dimensional (3-D) space structures. This is done after considering the conformations in the 3-D space due to the degrees of freedom of these structures. As a result, a novel directionality based 3-D waveform mapping for the 3-D protein structures is also proposed and it is used to compare protein structures using a matched filter approach. By incorporating a 3-D time axis, a highly-localized Gaussian-windowed chirp waveform is defined, and the amino acid information is mapped to the chirp parameters that are then directly used to obtain directionality in the 3-D space. This mapping is unique in that additional characteristic protein information such as hydrophobicity, that relates the sequence with the structure, can be added as another representation parameter. The additional parameter helps tracking similarities over local segments of the structure, this enabling classification of distantly related proteins which have partial structural similarities. This approach is successfully tested for pairwise alignments over full length structures, alignments over multiple structures to form a phylogenetic trees, and also alignments over local segments. Also, basic classification over protein structural classes using directional descriptors for the protein structure is performed.
ContributorsRavichandran, Lakshminarayan (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Spanias, Andreas S (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Lacroix, Zoé (Committee member) / Arizona State University (Publisher)
Created2011
150125-Thumbnail Image.png
Description
Damage assessment and residual useful life estimation (RULE) are essential for aerospace, civil and naval structures. Structural Health Monitoring (SHM) attempts to automate the process of damage detection and identification. Multiscale modeling is a key element in SHM. It not only provides important information on the physics of failure, such

Damage assessment and residual useful life estimation (RULE) are essential for aerospace, civil and naval structures. Structural Health Monitoring (SHM) attempts to automate the process of damage detection and identification. Multiscale modeling is a key element in SHM. It not only provides important information on the physics of failure, such as damage initiation and growth, the output can be used as "virtual sensing" data for detection and prognosis. The current research is part of an ongoing multidisciplinary effort to develop an integrated SHM framework for metallic aerospace components. In this thesis a multiscale model has been developed by bridging the relevant length scales, micro, meso and macro (or structural scale). Micro structural representations obtained from material characterization studies are used to define the length scales and to capture the size and orientation of the grains at the micro level. Parametric studies are conducted to estimate material parameters used in this constitutive model. Numerical and experimental simulations are performed to investigate the effects of Representative Volume Element (RVE) size, defect area fraction and distribution. A multiscale damage criterion accounting for crystal orientation effect is developed. This criterion is applied for fatigue crack initial stage prediction. A damage evolution rule based on strain energy density is modified to incorporate crystal plasticity at the microscale (local). Optimization approaches are used to calculate global damage index which is used for the RVE failure prediciton. Potential cracking directions are provided from the damage criterion simultaneously. A wave propagation model is incorporated with the damage model to detect changes in sensing signals due to plastic deformation and damage growth.
ContributorsLuo, Chuntao (Author) / Chattopadhyay, Aditi (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Jiang, Hanqing (Committee member) / Dai, Lenore (Committee member) / Li, Jian (Committee member) / Arizona State University (Publisher)
Created2011
150098-Thumbnail Image.png
Description
Polymer and polymer matrix composites (PMCs) materials are being used extensively in different civil and mechanical engineering applications. The behavior of the epoxy resin polymers under different types of loading conditions has to be understood before the mechanical behavior of Polymer Matrix Composites (PMCs) can be accurately predicted. In many

Polymer and polymer matrix composites (PMCs) materials are being used extensively in different civil and mechanical engineering applications. The behavior of the epoxy resin polymers under different types of loading conditions has to be understood before the mechanical behavior of Polymer Matrix Composites (PMCs) can be accurately predicted. In many structural applications, PMC structures are subjected to large flexural loadings, examples include repair of structures against earthquake and engine fan cases. Therefore it is important to characterize and model the flexural mechanical behavior of epoxy resin materials. In this thesis, a comprehensive research effort was undertaken combining experiments and theoretical modeling to investigate the mechanical behavior of epoxy resins subject to different loading conditions. Epoxy resin E 863 was tested at different strain rates. Samples with dog-bone geometry were used in the tension tests. Small sized cubic, prismatic, and cylindrical samples were used in compression tests. Flexural tests were conducted on samples with different sizes and loading conditions. Strains were measured using the digital image correlation (DIC) technique, extensometers, strain gauges, and actuators. Effects of triaxiality state of stress were studied. Cubic, prismatic, and cylindrical compression samples undergo stress drop at yield, but it was found that only cubic samples experience strain hardening before failure. Characteristic points of tensile and compressive stress strain relation and load deflection curve in flexure were measured and their variations with strain rate studied. Two different stress strain models were used to investigate the effect of out-of-plane loading on the uniaxial stress strain response of the epoxy resin material. The first model is a strain softening with plastic flow for tension and compression. The influence of softening localization on material behavior was investigated using the DIC system. It was found that compression plastic flow has negligible influence on flexural behavior in epoxy resins, which are stronger in pre-peak and post-peak softening in compression than in tension. The second model was a piecewise-linear stress strain curve simplified in the post-peak response. Beams and plates with different boundary conditions were tested and analytically studied. The flexural over-strength factor for epoxy resin polymeric materials were also evaluated.
ContributorsYekani Fard, Masoud (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Li, Jian (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2011
152344-Thumbnail Image.png
Description
Structural integrity is an important characteristic of performance for critical components used in applications such as aeronautics, materials, construction and transportation. When appraising the structural integrity of these components, evaluation methods must be accurate. In addition to possessing capability to perform damage detection, the ability to monitor the level of

Structural integrity is an important characteristic of performance for critical components used in applications such as aeronautics, materials, construction and transportation. When appraising the structural integrity of these components, evaluation methods must be accurate. In addition to possessing capability to perform damage detection, the ability to monitor the level of damage over time can provide extremely useful information in assessing the operational worthiness of a structure and in determining whether the structure should be repaired or removed from service. In this work, a sequential Bayesian approach with active sensing is employed for monitoring crack growth within fatigue-loaded materials. The monitoring approach is based on predicting crack damage state dynamics and modeling crack length observations. Since fatigue loading of a structural component can change while in service, an interacting multiple model technique is employed to estimate probabilities of different loading modes and incorporate this information in the crack length estimation problem. For the observation model, features are obtained from regions of high signal energy in the time-frequency plane and modeled for each crack length damage condition. Although this observation model approach exhibits high classification accuracy, the resolution characteristics can change depending upon the extent of the damage. Therefore, several different transmission waveforms and receiver sensors are considered to create multiple modes for making observations of crack damage. Resolution characteristics of the different observation modes are assessed using a predicted mean squared error criterion and observations are obtained using the predicted, optimal observation modes based on these characteristics. Calculation of the predicted mean square error metric can be computationally intensive, especially if performed in real time, and an approximation method is proposed. With this approach, the real time computational burden is decreased significantly and the number of possible observation modes can be increased. Using sensor measurements from real experiments, the overall sequential Bayesian estimation approach, with the adaptive capability of varying the state dynamics and observation modes, is demonstrated for tracking crack damage.
ContributorsHuff, Daniel W (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Kovvali, Narayan (Committee member) / Chakrabarti, Chaitali (Committee member) / Chattopadhyay, Aditi (Committee member) / Arizona State University (Publisher)
Created2013
151465-Thumbnail Image.png
Description
Adaptive processing and classification of electrocardiogram (ECG) signals are important in eliminating the strenuous process of manually annotating ECG recordings for clinical use. Such algorithms require robust models whose parameters can adequately describe the ECG signals. Although different dynamic statistical models describing ECG signals currently exist, they depend considerably on

Adaptive processing and classification of electrocardiogram (ECG) signals are important in eliminating the strenuous process of manually annotating ECG recordings for clinical use. Such algorithms require robust models whose parameters can adequately describe the ECG signals. Although different dynamic statistical models describing ECG signals currently exist, they depend considerably on a priori information and user-specified model parameters. Also, ECG beat morphologies, which vary greatly across patients and disease states, cannot be uniquely characterized by a single model. In this work, sequential Bayesian based methods are used to appropriately model and adaptively select the corresponding model parameters of ECG signals. An adaptive framework based on a sequential Bayesian tracking method is proposed to adaptively select the cardiac parameters that minimize the estimation error, thus precluding the need for pre-processing. Simulations using real ECG data from the online Physionet database demonstrate the improvement in performance of the proposed algorithm in accurately estimating critical heart disease parameters. In addition, two new approaches to ECG modeling are presented using the interacting multiple model and the sequential Markov chain Monte Carlo technique with adaptive model selection. Both these methods can adaptively choose between different models for various ECG beat morphologies without requiring prior ECG information, as demonstrated by using real ECG signals. A supervised Bayesian maximum-likelihood (ML) based classifier uses the estimated model parameters to classify different types of cardiac arrhythmias. However, the non-availability of sufficient amounts of representative training data and the large inter-patient variability pose a challenge to the existing supervised learning algorithms, resulting in a poor classification performance. In addition, recently developed unsupervised learning methods require a priori knowledge on the number of diseases to cluster the ECG data, which often evolves over time. In order to address these issues, an adaptive learning ECG classification method that uses Dirichlet process Gaussian mixture models is proposed. This approach does not place any restriction on the number of disease classes, nor does it require any training data. This algorithm is adapted to be patient-specific by labeling or identifying the generated mixtures using the Bayesian ML method, assuming the availability of labeled training data.
ContributorsEdla, Shwetha Reddy (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Kovvali, Narayan (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2012
151971-Thumbnail Image.png
Description
Electrical neural activity detection and tracking have many applications in medical research and brain computer interface technologies. In this thesis, we focus on the development of advanced signal processing algorithms to track neural activity and on the mapping of these algorithms onto hardware to enable real-time tracking. At the heart

Electrical neural activity detection and tracking have many applications in medical research and brain computer interface technologies. In this thesis, we focus on the development of advanced signal processing algorithms to track neural activity and on the mapping of these algorithms onto hardware to enable real-time tracking. At the heart of these algorithms is particle filtering (PF), a sequential Monte Carlo technique used to estimate the unknown parameters of dynamic systems. First, we analyze the bottlenecks in existing PF algorithms, and we propose a new parallel PF (PPF) algorithm based on the independent Metropolis-Hastings (IMH) algorithm. We show that the proposed PPF-IMH algorithm improves the root mean-squared error (RMSE) estimation performance, and we demonstrate that a parallel implementation of the algorithm results in significant reduction in inter-processor communication. We apply our implementation on a Xilinx Virtex-5 field programmable gate array (FPGA) platform to demonstrate that, for a one-dimensional problem, the PPF-IMH architecture with four processing elements and 1,000 particles can process input samples at 170 kHz by using less than 5% FPGA resources. We also apply the proposed PPF-IMH to waveform-agile sensing to achieve real-time tracking of dynamic targets with high RMSE tracking performance. We next integrate the PPF-IMH algorithm to track the dynamic parameters in neural sensing when the number of neural dipole sources is known. We analyze the computational complexity of a PF based method and propose the use of multiple particle filtering (MPF) to reduce the complexity. We demonstrate the improved performance of MPF using numerical simulations with both synthetic and real data. We also propose an FPGA implementation of the MPF algorithm and show that the implementation supports real-time tracking. For the more realistic scenario of automatically estimating an unknown number of time-varying neural dipole sources, we propose a new approach based on the probability hypothesis density filtering (PHDF) algorithm. The PHDF is implemented using particle filtering (PF-PHDF), and it is applied in a closed-loop to first estimate the number of dipole sources and then their corresponding amplitude, location and orientation parameters. We demonstrate the improved tracking performance of the proposed PF-PHDF algorithm and map it onto a Xilinx Virtex-5 FPGA platform to show its real-time implementation potential. Finally, we propose the use of sensor scheduling and compressive sensing techniques to reduce the number of active sensors, and thus overall power consumption, of electroencephalography (EEG) systems. We propose an efficient sensor scheduling algorithm which adaptively configures EEG sensors at each measurement time interval to reduce the number of sensors needed for accurate tracking. We combine the sensor scheduling method with PF-PHDF and implement the system on an FPGA platform to achieve real-time tracking. We also investigate the sparsity of EEG signals and integrate compressive sensing with PF to estimate neural activity. Simulation results show that both sensor scheduling and compressive sensing based methods achieve comparable tracking performance with significantly reduced number of sensors.
ContributorsMiao, Lifeng (Author) / Chakrabarti, Chaitali (Thesis advisor) / Papandreou-Suppappola, Antonia (Thesis advisor) / Zhang, Junshan (Committee member) / Bliss, Daniel (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2013