Matching Items (98)
Filtering by

Clear all filters

153196-Thumbnail Image.png
Description
Sparse learning is a powerful tool to generate models of high-dimensional data with high interpretability, and it has many important applications in areas such as bioinformatics, medical image processing, and computer vision. Recently, the a priori structural information has been shown to be powerful for improving the performance of sparse

Sparse learning is a powerful tool to generate models of high-dimensional data with high interpretability, and it has many important applications in areas such as bioinformatics, medical image processing, and computer vision. Recently, the a priori structural information has been shown to be powerful for improving the performance of sparse learning models. A graph is a fundamental way to represent structural information of features. This dissertation focuses on graph-based sparse learning. The first part of this dissertation aims to integrate a graph into sparse learning to improve the performance. Specifically, the problem of feature grouping and selection over a given undirected graph is considered. Three models are proposed along with efficient solvers to achieve simultaneous feature grouping and selection, enhancing estimation accuracy. One major challenge is that it is still computationally challenging to solve large scale graph-based sparse learning problems. An efficient, scalable, and parallel algorithm for one widely used graph-based sparse learning approach, called anisotropic total variation regularization is therefore proposed, by explicitly exploring the structure of a graph. The second part of this dissertation focuses on uncovering the graph structure from the data. Two issues in graphical modeling are considered. One is the joint estimation of multiple graphical models using a fused lasso penalty and the other is the estimation of hierarchical graphical models. The key technical contribution is to establish the necessary and sufficient condition for the graphs to be decomposable. Based on this key property, a simple screening rule is presented, which reduces the size of the optimization problem, dramatically reducing the computational cost.
ContributorsYang, Sen (Author) / Ye, Jieping (Thesis advisor) / Wonka, Peter (Thesis advisor) / Wang, Yalin (Committee member) / Li, Jing (Committee member) / Arizona State University (Publisher)
Created2014
153259-Thumbnail Image.png
Description
With the rise of social media, hundreds of millions of people spend countless hours all over the globe on social media to connect, interact, share, and create user-generated data. This rich environment provides tremendous opportunities for many different players to easily and effectively reach out to people, interact with them,

With the rise of social media, hundreds of millions of people spend countless hours all over the globe on social media to connect, interact, share, and create user-generated data. This rich environment provides tremendous opportunities for many different players to easily and effectively reach out to people, interact with them, influence them, or get their opinions. There are two pieces of information that attract most attention on social media sites, including user preferences and interactions. Businesses and organizations use this information to better understand and therefore provide customized services to social media users. This data can be used for different purposes such as, targeted advertisement, product recommendation, or even opinion mining. Social media sites use this information to better serve their users.

Despite the importance of personal information, in many cases people do not reveal this information to the public. Predicting the hidden or missing information is a common response to this challenge. In this thesis, we address the problem of predicting user attributes and future or missing links using an egocentric approach. The current research proposes novel concepts and approaches to better understand social media users in twofold including, a) their attributes, preferences, and interests, and b) their future or missing connections and interactions. More specifically, the contributions of this dissertation are (1) proposing a framework to study social media users through their attributes and link information, (2) proposing a scalable algorithm to predict user preferences; and (3) proposing a novel approach to predict attributes and links with limited information. The proposed algorithms use an egocentric approach to improve the state of the art algorithms in two directions. First by improving the prediction accuracy, and second, by increasing the scalability of the algorithms.
ContributorsAbbasi, Mohammad Ali, 1975- (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Ye, Jieping (Committee member) / Agarwal, Nitin (Committee member) / Arizona State University (Publisher)
Created2014
153269-Thumbnail Image.png
Description
Social media platforms such as Twitter, Facebook, and blogs have emerged as valuable

- in fact, the de facto - virtual town halls for people to discover, report, share and

communicate with others about various types of events. These events range from

widely-known events such as the U.S Presidential debate to smaller scale,

Social media platforms such as Twitter, Facebook, and blogs have emerged as valuable

- in fact, the de facto - virtual town halls for people to discover, report, share and

communicate with others about various types of events. These events range from

widely-known events such as the U.S Presidential debate to smaller scale, local events

such as a local Halloween block party. During these events, we often witness a large

amount of commentary contributed by crowds on social media. This burst of social

media responses surges with the "second-screen" behavior and greatly enriches the

user experience when interacting with the event and people's awareness of an event.

Monitoring and analyzing this rich and continuous flow of user-generated content can

yield unprecedentedly valuable information about the event, since these responses

usually offer far more rich and powerful views about the event that mainstream news

simply could not achieve. Despite these benefits, social media also tends to be noisy,

chaotic, and overwhelming, posing challenges to users in seeking and distilling high

quality content from that noise.

In this dissertation, I explore ways to leverage social media as a source of information and analyze events based on their social media responses collectively. I develop, implement and evaluate EventRadar, an event analysis toolbox which is able to identify, enrich, and characterize events using the massive amounts of social media responses. EventRadar contains three automated, scalable tools to handle three core event analysis tasks: Event Characterization, Event Recognition, and Event Enrichment. More specifically, I develop ET-LDA, a Bayesian model and SocSent, a matrix factorization framework for handling the Event Characterization task, i.e., modeling characterizing an event in terms of its topics and its audience's response behavior (via ET-LDA), and the sentiments regarding its topics (via SocSent). I also develop DeMa, an unsupervised event detection algorithm for handling the Event Recognition task, i.e., detecting trending events from a stream of noisy social media posts. Last, I develop CrowdX, a spatial crowdsourcing system for handling the Event Enrichment task, i.e., gathering additional first hand information (e.g., photos) from the field to enrich the given event's context.

Enabled by EventRadar, it is more feasible to uncover patterns that have not been

explored previously and re-validating existing social theories with new evidence. As a

result, I am able to gain deep insights into how people respond to the event that they

are engaged in. The results reveal several key insights into people's various responding

behavior over the event's timeline such the topical context of people's tweets does not

always correlate with the timeline of the event. In addition, I also explore the factors

that affect a person's engagement with real-world events on Twitter and find that

people engage in an event because they are interested in the topics pertaining to

that event; and while engaging, their engagement is largely affected by their friends'

behavior.
ContributorsHu, Yuheng (Author) / Kambhampati, Subbarao (Thesis advisor) / Horvitz, Eric (Committee member) / Krumm, John (Committee member) / Liu, Huan (Committee member) / Sundaram, Hari (Committee member) / Arizona State University (Publisher)
Created2014
153374-Thumbnail Image.png
Description
Users often join an online social networking (OSN) site, like Facebook, to remain social, by either staying connected with friends or expanding social networks. On an OSN site, users generally share variety of personal information which is often expected to be visible to their friends, but sometimes vulnerable to

Users often join an online social networking (OSN) site, like Facebook, to remain social, by either staying connected with friends or expanding social networks. On an OSN site, users generally share variety of personal information which is often expected to be visible to their friends, but sometimes vulnerable to unwarranted access from others. The recent study suggests that many personal attributes, including religious and political affiliations, sexual orientation, relationship status, age, and gender, are predictable using users' personal data from an OSN site. The majority of users want to remain socially active, and protect their personal data at the same time. This tension leads to a user's vulnerability, allowing privacy attacks which can cause physical and emotional distress to a user, sometimes with dire consequences. For example, stalkers can make use of personal information available on an OSN site to their personal gain. This dissertation aims to systematically study a user vulnerability against such privacy attacks.

A user vulnerability can be managed in three steps: (1) identifying, (2) measuring and (3) reducing a user vulnerability. Researchers have long been identifying vulnerabilities arising from user's personal data, including user names, demographic attributes, lists of friends, wall posts and associated interactions, multimedia data such as photos, audios and videos, and tagging of friends. Hence, this research first proposes a way to measure and reduce a user vulnerability to protect such personal data. This dissertation also proposes an algorithm to minimize a user's vulnerability while maximizing their social utility values.

To address these vulnerability concerns, social networking sites like Facebook usually let their users to adjust their profile settings so as to make some of their data invisible. However, users sometimes interact with others using unprotected posts (e.g., posts from a ``Facebook page\footnote{The term ''Facebook page`` refers to the page which are commonly dedicated for businesses, brands and organizations to share their stories and connect with people.}''). Such interactions help users to become more social and are publicly accessible to everyone. Thus, visibilities of these interactions are beyond the control of their profile settings. I explore such unprotected interactions so that users' are well aware of these new vulnerabilities and adopt measures to mitigate them further. In particular, {\em are users' personal attributes predictable using only the unprotected interactions}? To answer this question, I address a novel problem of predictability of users' personal attributes with unprotected interactions. The extreme sparsity patterns in users' unprotected interactions pose a serious challenge. Therefore, I approach to mitigating the data sparsity challenge by designing a novel attribute prediction framework using only the unprotected interactions. Experimental results on Facebook dataset demonstrates that the proposed framework can predict users' personal attributes.
ContributorsGundecha, Pritam S (Author) / Liu, Huan (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Ye, Jieping (Committee member) / Barbier, Geoffrey (Committee member) / Arizona State University (Publisher)
Created2015
150158-Thumbnail Image.png
Description
Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering

Multi-label learning, which deals with data associated with multiple labels simultaneously, is ubiquitous in real-world applications. To overcome the curse of dimensionality in multi-label learning, in this thesis I study multi-label dimensionality reduction, which extracts a small number of features by removing the irrelevant, redundant, and noisy information while considering the correlation among different labels in multi-label learning. Specifically, I propose Hypergraph Spectral Learning (HSL) to perform dimensionality reduction for multi-label data by exploiting correlations among different labels using a hypergraph. The regularization effect on the classical dimensionality reduction algorithm known as Canonical Correlation Analysis (CCA) is elucidated in this thesis. The relationship between CCA and Orthonormalized Partial Least Squares (OPLS) is also investigated. To perform dimensionality reduction efficiently for large-scale problems, two efficient implementations are proposed for a class of dimensionality reduction algorithms, including canonical correlation analysis, orthonormalized partial least squares, linear discriminant analysis, and hypergraph spectral learning. The first approach is a direct least squares approach which allows the use of different regularization penalties, but is applicable under a certain assumption; the second one is a two-stage approach which can be applied in the regularization setting without any assumption. Furthermore, an online implementation for the same class of dimensionality reduction algorithms is proposed when the data comes sequentially. A Matlab toolbox for multi-label dimensionality reduction has been developed and released. The proposed algorithms have been applied successfully in the Drosophila gene expression pattern image annotation. The experimental results on some benchmark data sets in multi-label learning also demonstrate the effectiveness and efficiency of the proposed algorithms.
ContributorsSun, Liang (Author) / Ye, Jieping (Thesis advisor) / Li, Baoxin (Committee member) / Liu, Huan (Committee member) / Mittelmann, Hans D. (Committee member) / Arizona State University (Publisher)
Created2011
150244-Thumbnail Image.png
Description
A statement appearing in social media provides a very significant challenge for determining the provenance of the statement. Provenance describes the origin, custody, and ownership of something. Most statements appearing in social media are not published with corresponding provenance data. However, the same characteristics that make the social media environment

A statement appearing in social media provides a very significant challenge for determining the provenance of the statement. Provenance describes the origin, custody, and ownership of something. Most statements appearing in social media are not published with corresponding provenance data. However, the same characteristics that make the social media environment challenging, including the massive amounts of data available, large numbers of users, and a highly dynamic environment, provide unique and untapped opportunities for solving the provenance problem for social media. Current approaches for tracking provenance data do not scale for online social media and consequently there is a gap in provenance methodologies and technologies providing exciting research opportunities. The guiding vision is the use of social media information itself to realize a useful amount of provenance data for information in social media. This departs from traditional approaches for data provenance which rely on a central store of provenance information. The contemporary online social media environment is an enormous and constantly updated "central store" that can be mined for provenance information that is not readily made available to the average social media user. This research introduces an approach and builds a foundation aimed at realizing a provenance data capability for social media users that is not accessible today.
ContributorsBarbier, Geoffrey P (Author) / Liu, Huan (Thesis advisor) / Bell, Herbert (Committee member) / Li, Baoxin (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
149977-Thumbnail Image.png
Description
Reliable extraction of human pose features that are invariant to view angle and body shape changes is critical for advancing human movement analysis. In this dissertation, the multifactor analysis techniques, including the multilinear analysis and the multifactor Gaussian process methods, have been exploited to extract such invariant pose features from

Reliable extraction of human pose features that are invariant to view angle and body shape changes is critical for advancing human movement analysis. In this dissertation, the multifactor analysis techniques, including the multilinear analysis and the multifactor Gaussian process methods, have been exploited to extract such invariant pose features from video data by decomposing various key contributing factors, such as pose, view angle, and body shape, in the generation of the image observations. Experimental results have shown that the resulting pose features extracted using the proposed methods exhibit excellent invariance properties to changes in view angles and body shapes. Furthermore, using the proposed invariant multifactor pose features, a suite of simple while effective algorithms have been developed to solve the movement recognition and pose estimation problems. Using these proposed algorithms, excellent human movement analysis results have been obtained, and most of them are superior to those obtained from state-of-the-art algorithms on the same testing datasets. Moreover, a number of key movement analysis challenges, including robust online gesture spotting and multi-camera gesture recognition, have also been addressed in this research. To this end, an online gesture spotting framework has been developed to automatically detect and learn non-gesture movement patterns to improve gesture localization and recognition from continuous data streams using a hidden Markov network. In addition, the optimal data fusion scheme has been investigated for multicamera gesture recognition, and the decision-level camera fusion scheme using the product rule has been found to be optimal for gesture recognition using multiple uncalibrated cameras. Furthermore, the challenge of optimal camera selection in multi-camera gesture recognition has also been tackled. A measure to quantify the complementary strength across cameras has been proposed. Experimental results obtained from a real-life gesture recognition dataset have shown that the optimal camera combinations identified according to the proposed complementary measure always lead to the best gesture recognition results.
ContributorsPeng, Bo (Author) / Qian, Gang (Thesis advisor) / Ye, Jieping (Committee member) / Li, Baoxin (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2011
149794-Thumbnail Image.png
Description
Genes have widely different pertinences to the etiology and pathology of diseases. Thus, they can be ranked according to their disease-significance on a genomic scale, which is the subject of gene prioritization. Given a set of genes known to be related to a disease, it is reasonable to use them

Genes have widely different pertinences to the etiology and pathology of diseases. Thus, they can be ranked according to their disease-significance on a genomic scale, which is the subject of gene prioritization. Given a set of genes known to be related to a disease, it is reasonable to use them as a basis to determine the significance of other candidate genes, which will then be ranked based on the association they exhibit with respect to the given set of known genes. Experimental and computational data of various kinds have different reliability and relevance to a disease under study. This work presents a gene prioritization method based on integrated biological networks that incorporates and models the various levels of relevance and reliability of diverse sources. The method is shown to achieve significantly higher performance as compared to two well-known gene prioritization algorithms. Essentially, no bias in the performance was seen as it was applied to diseases of diverse ethnology, e.g., monogenic, polygenic and cancer. The method was highly stable and robust against significant levels of noise in the data. Biological networks are often sparse, which can impede the operation of associationbased gene prioritization algorithms such as the one presented here from a computational perspective. As a potential approach to overcome this limitation, we explore the value that transcription factor binding sites can have in elucidating suitable targets. Transcription factors are needed for the expression of most genes, especially in higher organisms and hence genes can be associated via their genetic regulatory properties. While each transcription factor recognizes specific DNA sequence patterns, such patterns are mostly unknown for many transcription factors. Even those that are known are inconsistently reported in the literature, implying a potentially high level of inaccuracy. We developed computational methods for prediction and improvement of transcription factor binding patterns. Tests performed on the improvement method by employing synthetic patterns under various conditions showed that the method is very robust and the patterns produced invariably converge to nearly identical series of patterns. Preliminary tests were conducted to incorporate knowledge from transcription factor binding sites into our networkbased model for prioritization, with encouraging results. Genes have widely different pertinences to the etiology and pathology of diseases. Thus, they can be ranked according to their disease-significance on a genomic scale, which is the subject of gene prioritization. Given a set of genes known to be related to a disease, it is reasonable to use them as a basis to determine the significance of other candidate genes, which will then be ranked based on the association they exhibit with respect to the given set of known genes. Experimental and computational data of various kinds have different reliability and relevance to a disease under study. This work presents a gene prioritization method based on integrated biological networks that incorporates and models the various levels of relevance and reliability of diverse sources. The method is shown to achieve significantly higher performance as compared to two well-known gene prioritization algorithms. Essentially, no bias in the performance was seen as it was applied to diseases of diverse ethnology, e.g., monogenic, polygenic and cancer. The method was highly stable and robust against significant levels of noise in the data. Biological networks are often sparse, which can impede the operation of associationbased gene prioritization algorithms such as the one presented here from a computational perspective. As a potential approach to overcome this limitation, we explore the value that transcription factor binding sites can have in elucidating suitable targets. Transcription factors are needed for the expression of most genes, especially in higher organisms and hence genes can be associated via their genetic regulatory properties. While each transcription factor recognizes specific DNA sequence patterns, such patterns are mostly unknown for many transcription factors. Even those that are known are inconsistently reported in the literature, implying a potentially high level of inaccuracy. We developed computational methods for prediction and improvement of transcription factor binding patterns. Tests performed on the improvement method by employing synthetic patterns under various conditions showed that the method is very robust and the patterns produced invariably converge to nearly identical series of patterns. Preliminary tests were conducted to incorporate knowledge from transcription factor binding sites into our networkbased model for prioritization, with encouraging results. To validate these approaches in a disease-specific context, we built a schizophreniaspecific network based on the inferred associations and performed a comprehensive prioritization of human genes with respect to the disease. These results are expected to be validated empirically, but computational validation using known targets are very positive.
ContributorsLee, Jang (Author) / Gonzalez, Graciela (Thesis advisor) / Ye, Jieping (Committee member) / Davulcu, Hasan (Committee member) / Gallitano-Mendel, Amelia (Committee member) / Arizona State University (Publisher)
Created2011
149950-Thumbnail Image.png
Description
With the rapid growth of mobile computing and sensor technology, it is now possible to access data from a variety of sources. A big challenge lies in linking sensor based data with social and cognitive variables in humans in real world context. This dissertation explores the relationship between creativity in

With the rapid growth of mobile computing and sensor technology, it is now possible to access data from a variety of sources. A big challenge lies in linking sensor based data with social and cognitive variables in humans in real world context. This dissertation explores the relationship between creativity in teamwork, and team members' movement and face-to-face interaction strength in the wild. Using sociometric badges (wearable sensors), electronic Experience Sampling Methods (ESM), the KEYS team creativity assessment instrument, and qualitative methods, three research studies were conducted in academic and industry R&D; labs. Sociometric badges captured movement of team members and face-to-face interaction between team members. KEYS scale was implemented using ESM for self-rated creativity and expert-coded creativity assessment. Activities (movement and face-to-face interaction) and creativity of one five member and two seven member teams were tracked for twenty five days, eleven days, and fifteen days respectively. Day wise values of movement and face-to-face interaction for participants were mean split categorized as creative and non-creative using self- rated creativity measure and expert-coded creativity measure. Paired-samples t-tests [t(36) = 3.132, p < 0.005; t(23) = 6.49 , p < 0.001] confirmed that average daily movement energy during creative days (M = 1.31, SD = 0.04; M = 1.37, SD = 0.07) was significantly greater than the average daily movement of non-creative days (M = 1.29, SD = 0.03; M = 1.24, SD = 0.09). The eta squared statistic (0.21; 0.36) indicated a large effect size. A paired-samples t-test also confirmed that face-to-face interaction tie strength of team members during creative days (M = 2.69, SD = 4.01) is significantly greater [t(41) = 2.36, p < 0.01] than the average face-to-face interaction tie strength of team members for non-creative days (M = 0.9, SD = 2.1). The eta squared statistic (0.11) indicated a large effect size. The combined approach of principal component analysis (PCA) and linear discriminant analysis (LDA) conducted on movement and face-to-face interaction data predicted creativity with 87.5% and 91% accuracy respectively. This work advances creativity research and provides a foundation for sensor based real-time creativity support tools for teams.
ContributorsTripathi, Priyamvada (Author) / Burleson, Winslow (Thesis advisor) / Liu, Huan (Committee member) / VanLehn, Kurt (Committee member) / Pentland, Alex (Committee member) / Arizona State University (Publisher)
Created2011
149714-Thumbnail Image.png
Description
This thesis deals with the analysis of interpersonal communication dynamics in online social networks and social media. Our central hypothesis is that communication dynamics between individuals manifest themselves via three key aspects: the information that is the content of communication, the social engagement i.e. the sociological framework emergent of the

This thesis deals with the analysis of interpersonal communication dynamics in online social networks and social media. Our central hypothesis is that communication dynamics between individuals manifest themselves via three key aspects: the information that is the content of communication, the social engagement i.e. the sociological framework emergent of the communication process, and the channel i.e. the media via which communication takes place. Communication dynamics have been of interest to researchers from multi-faceted domains over the past several decades. However, today we are faced with several modern capabilities encompassing a host of social media websites. These sites feature variegated interactional affordances, ranging from blogging, micro-blogging, sharing media elements as well as a rich set of social actions such as tagging, voting, commenting and so on. Consequently, these communication tools have begun to redefine the ways in which we exchange information, our modes of social engagement, and mechanisms of how the media characteristics impact our interactional behavior. The outcomes of this research are manifold. We present our contributions in three parts, corresponding to the three key organizing ideas. First, we have observed that user context is key to characterizing communication between a pair of individuals. However interestingly, the probability of future communication seems to be more sensitive to the context compared to the delay, which appears to be rather habitual. Further, we observe that diffusion of social actions in a network can be indicative of future information cascades; that might be attributed to social influence or homophily depending on the nature of the social action. Second, we have observed that different modes of social engagement lead to evolution of groups that have considerable predictive capability in characterizing external-world temporal occurrences, such as stock market dynamics as well as collective political sentiments. Finally, characterization of communication on rich media sites have shown that conversations that are deemed "interesting" appear to have consequential impact on the properties of the social network they are associated with: in terms of degree of participation of the individuals in future conversations, thematic diffusion as well as emergent cohesiveness in activity among the concerned participants in the network. Based on all these outcomes, we believe that this research can make significant contribution into a better understanding of how we communicate online and how it is redefining our collective sociological behavior.
ContributorsDe Choudhury, Munmun (Author) / Sundaram, Hari (Thesis advisor) / Candan, K. Selcuk (Committee member) / Liu, Huan (Committee member) / Watts, Duncan J. (Committee member) / Seligmann, Doree D. (Committee member) / Arizona State University (Publisher)
Created2011