Matching Items (4)
Filtering by

Clear all filters

156034-Thumbnail Image.png
Description
Recently, nanostructured metamaterials have attracted lots of attentions due to its tunable artificial properties. In particular, nanowire
anohole based metamaterials which are known of the capability of large area fabrication were intensively studied. Most of the studies are only based on the electrical responses of the metamaterials; however, magnetic response, is

Recently, nanostructured metamaterials have attracted lots of attentions due to its tunable artificial properties. In particular, nanowire
anohole based metamaterials which are known of the capability of large area fabrication were intensively studied. Most of the studies are only based on the electrical responses of the metamaterials; however, magnetic response, is usually neglected since magnetic material does not exist naturally within the visible or infrared range. For the past few years, artificial magnetic response from nanostructure based metamaterials has been proposed. This reveals the possibility of exciting resonance modes based on magnetic responses in nanowire
anohole metamaterials which can potentially provide additional enhancement on radiative transport. On the other hand, beyond classical far-field radiative heat transfer, near-field radiation which is known of exceeding the Planck’s blackbody limit has also become a hot topic in the field.

This PhD dissertation aims to obtain a deep fundamental understanding of nanowire
anohole based metamaterials in both far-field and near-field in terms of both electrical and magnetic responses. The underlying mechanisms that can be excited by nanowire
anohole metamaterials such as electrical surface plasmon polariton, magnetic hyperbolic mode, magnetic polariton, etc., will be theoretically studied in both far-field and near-field. Furthermore, other than conventional effective medium theory which only considers the electrical response of metamaterials, the artificial magnetic response of metamaterials will also be studied through parameter retrieval of far-field optical and radiative properties for studying near-field radiative transport. Moreover, a custom-made AFM tip based metrology will be employed to experimentally study near-field radiative transfer between a plate and a sphere separated by nanometer vacuum gaps in vacuum. This transformative research will break new ground in nanoscale radiative heat transfer for various applications in energy systems, thermal management, and thermal imaging and sensing.
ContributorsChang, Jui-Yung (Author) / Wang, Liping (Thesis advisor) / Phelan, Patrick (Committee member) / Wang, Robert (Committee member) / Yu, Hongbin (Committee member) / Hildreth, Owen (Committee member) / Arizona State University (Publisher)
Created2017
156687-Thumbnail Image.png
Description
Additive manufacturing (AM) describes an array of methods used to create a 3D object layer by layer. The increasing popularity of AM in the past decade has been due to its demonstrated potential to increase design flexibility, produce rapid prototypes, and decrease material waste. Temporary supports are an

Additive manufacturing (AM) describes an array of methods used to create a 3D object layer by layer. The increasing popularity of AM in the past decade has been due to its demonstrated potential to increase design flexibility, produce rapid prototypes, and decrease material waste. Temporary supports are an inconvenient necessity in many metal AM parts. These sacrificial structures are used to fabricate large overhangs, anchor the part to the build substrate, and provide a heat pathway to avoid warping. Polymers AM has addressed this issue by using support material that is soluble in an electrolyte that the base material is not. In contrast, metals AM has traditionally approached support removal using time consuming, costly methods such as electrical discharge machining or a dremel.

This work introduces dissolvable supports to single- and multi-material metals AM. The multi-material approach uses material choice to design a functionally graded material where corrosion is the functionality being varied. The single-material approach is the primary focus of this thesis, leveraging already common post-print heat treatments to locally alter the microstructure near the surface. By including a sensitizing agent in the ageing heat treatment, carbon is diffused into the part decreasing the corrosion resistance to a depth equal to at least half the support thickness. In a properly chosen electrolyte, this layer is easily chemically, or electrochemically removed. Stainless steel 316 (SS316) and Inconel 718 are both investigated to study this process using two popular alloys. The microstructure evolution and corrosion properties are investigated for both. For SS316, the effect of applied electrochemical potential is investigated to describe the varying corrosion phenomena induced, and the effect of potential choice on resultant roughness. In summary, a new approach to remove supports from metal AM parts is introduced to decrease costs and further the field of metals AM by expanding the design space.
ContributorsLefky, Christopher (Author) / Hildreth, Owen (Thesis advisor) / Chawla, Nikhilesh (Committee member) / Azeredo, Bruno (Committee member) / Rykaczewski, Konrad (Committee member) / Nian, Qiong (Committee member) / Arizona State University (Publisher)
Created2018
154853-Thumbnail Image.png
Description
Origami and kirigami, the technique of generating three-dimensional (3D) structures from two-dimensional (2D) flat sheets, are now more and more involved in scientific and engineering fields. Therefore, the development of tools for their theoretical analysis becomes more and more important. Since much effort was paid on calculations based on pure

Origami and kirigami, the technique of generating three-dimensional (3D) structures from two-dimensional (2D) flat sheets, are now more and more involved in scientific and engineering fields. Therefore, the development of tools for their theoretical analysis becomes more and more important. Since much effort was paid on calculations based on pure mathematical consideration and only limited effort has been paid to include mechanical properties, the goal of my research is developing a method to analyze the mechanical behavior of origami and kirigami based structures. Mechanical characteristics, including nonlocal effect and fracture of the structures, as well as elasticity and plasticity of materials are studied. For calculation of relative simple structures and building of structures’ constitutive relations, analytical approaches were used. For more complex structures, finite element analysis (FEA), which is commonly applied as a numerical method for the analysis of solid structures, was utilized. The general study approach is not necessarily related to characteristic size of model. I believe the scale-independent method described here will pave a new way to understand the mechanical response of a variety of origami and kirigami based structures under given mechanical loading.
ContributorsLv, Cheng (Author) / Jiang, Hanqing (Thesis advisor) / Yu, Hongbin (Committee member) / Wang, Liping (Committee member) / Mignolet, Marc (Committee member) / Hildreth, Owen (Committee member) / Arizona State University (Publisher)
Created2016
155171-Thumbnail Image.png
Description
The use of nanoparticle-in-matrix composites is a common motif among a broad range of nanoscience applications and is of particular interest to the thermal sciences community. To explore this morphological theme, crystalline inorganic composites were synthesized by mixing colloidal CdSe nanocrystals and In2Se3 metal chalcogenide complex (MCC) precursor in hydrazine

The use of nanoparticle-in-matrix composites is a common motif among a broad range of nanoscience applications and is of particular interest to the thermal sciences community. To explore this morphological theme, crystalline inorganic composites were synthesized by mixing colloidal CdSe nanocrystals and In2Se3 metal chalcogenide complex (MCC) precursor in hydrazine solvent and then thermally transform the MCC precursor into a crystalline In2Se3 matrix. The volume fraction of CdSe nanocrystals was varied from 0 to ~100% .Rich structural and chemical interactions between the CdSe nanocrystals and the In2Se3 matrix were observed. The average thermal conductivities of the 100% In2Se3 and ~100% CdSe composites are 0.32 and 0.53 W/m-K, respectively, which are remarkably low for inorganic crystalline materials. With the exception of the ~100% CdSe samples, the thermal conductivities of these nanocomposites are insensitive to CdSe volume fraction.This insensitivity is attributed to competing effects rise from structural morphology changes during composite formation.

Next, thermoelectric properties of metal chalcogenide thin films deposited from precursors using thiol-amine solvent mixtures were first reported. Cu2-xSeyS1-y and Ag-doped Cu2-xSeyS1-y thin films were synthesized, and the interrelationship between structure, composition, and room temperature thermoelectric properties was studied. The precursor annealing temperature affects the metal:chalcogen ratio, and leads to charge carrier concentration changes that affect Seebeck coefficient and electrical conductivity. Incorporating Ag into the Cu2-xSeyS1-y film leads to appreciable improvements in thermoelectric performance. Overall, the room temperature thermoelectric properties of these solution-processed materials are comparable to measurements on Cu2-xSe alloys made via conventional thermoelectric material processing methods.

Finally, a new route to make soluble metal chalcogenide precursors by reacting organic dichalcogenides with metal in different solvents was reported. By this method, SnSe, PbSe, SnTe and PbSexTe1-x precursors were successfully synthesized, and phase-pure and impurity-free metal chalcogenides were recovered after precursor decomposition. Compared to the hydrazine and diamine-dithiol route, the new approach uses safe solvent, and avoids introducing unwanted sulfur into the precursor. SnSe and PbSexTe1-x thin films, both of which are interesting thermoelectric materials, were also successfully made by solution deposition. The thermoelectric property measurements on those thin films show a great potential for future improvements.
ContributorsMa, Yuanyu (Author) / Wang, Robert (Thesis advisor) / Newman, Nathan (Committee member) / Wang, Liping (Committee member) / Hildreth, Owen (Committee member) / Arizona State University (Publisher)
Created2016