Matching Items (25)
Filtering by

Clear all filters

152156-Thumbnail Image.png
Description
Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation tells a twentieth-century history of scientific investigations on cell degeneration, including cell death and aging. By describing four central developments

Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation tells a twentieth-century history of scientific investigations on cell degeneration, including cell death and aging. By describing four central developments in cell degeneration research with the four major chapters, I trace the emergence of the degenerating cell as a scientific object, describe the generations of a variety of concepts, interpretations and usages associated with cell death and aging, and analyze the transforming influences of the rising cell degeneration research. Particularly, the four chapters show how the changing scientific practices about cellular life in embryology, cell culture, aging research, and molecular biology of Caenorhabditis elegans shaped the interpretations about cell degeneration in the twentieth-century as life-shaping, limit-setting, complex, yet regulated. These events created and consolidated important concepts in life sciences such as programmed cell death, the Hayflick limit, apoptosis, and death genes. These cases also transformed the material and epistemic practices about the end of cellular life subsequently and led to the formations of new research communities. The four cases together show the ways cell degeneration became a shared subject between molecular cell biology, developmental biology, gerontology, oncology, and pathology of degenerative diseases. These practices and perspectives created a special kind of interconnectivity between different fields and led to a level of interdisciplinarity within cell degeneration research by the early 1990s.
ContributorsJiang, Lijing (Author) / Maienschein, Jane (Thesis advisor) / Laubichler, Manfred (Thesis advisor) / Hurlbut, James (Committee member) / Creath, Richard (Committee member) / White, Michael (Committee member) / Arizona State University (Publisher)
Created2013
152315-Thumbnail Image.png
Description
ABSTRACT Whole genome sequencing (WGS) and whole exome sequencing (WES) are two comprehensive genomic tests which use next-generation sequencing technology to sequence most of the 3.2 billion base pairs in a human genome (WGS) or many of the estimated 22,000 protein-coding genes in the genome (WES). The promises offered from

ABSTRACT Whole genome sequencing (WGS) and whole exome sequencing (WES) are two comprehensive genomic tests which use next-generation sequencing technology to sequence most of the 3.2 billion base pairs in a human genome (WGS) or many of the estimated 22,000 protein-coding genes in the genome (WES). The promises offered from WGS/WES are: to identify suspected yet unidentified genetic diseases, to characterize the genomic mutations in a tumor to identify targeted therapeutic agents and, to predict future diseases with the hope of promoting disease prevention strategies and/or offering early treatment. Promises notwithstanding, sequencing a human genome presents several interrelated challenges: how to adequately analyze, interpret, store, reanalyze and apply an unprecedented amount of genomic data (with uncertain clinical utility) to patient care? In addition, genomic data has the potential to become integral for improving the medical care of an individual and their family, years after a genome is sequenced. Current informed consent protocols do not adequately address the unique challenges and complexities inherent to the process of WGS/WES. This dissertation constructs a novel informed consent process for individuals considering WGS/WES, capable of fulfilling both legal and ethical requirements of medical consent while addressing the intricacies of WGS/WES, ultimately resulting in a more effective consenting experience. To better understand components of an effective consenting experience, the first part of this dissertation traces the historical origin of the informed consent process to identify the motivations, rationales and institutional commitments that sustain our current consenting protocols for genetic testing. After understanding the underlying commitments that shape our current informed consent protocols, I discuss the effectiveness of the informed consent process from an ethical and legal standpoint. I illustrate how WGS/WES introduces new complexities to the informed consent process and assess whether informed consent protocols proposed for WGS/WES address these complexities. The last section of this dissertation describes a novel informed consent process for WGS/WES, constructed from the original ethical intent of informed consent, analysis of existing informed consent protocols, and my own observations as a genetic counselor for what constitutes an effective consenting experience.
ContributorsHunt, Katherine (Author) / Hurlbut, J. Benjamin (Thesis advisor) / Robert, Jason S. (Thesis advisor) / Maienschein, Jane (Committee member) / Northfelt, Donald W. (Committee member) / Marchant, Gary (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2013
152605-Thumbnail Image.png
Description
In 1997, developmental biologist Michael Richardson compared his research team's embryo photographs to Ernst Haeckel's 1874 embryo drawings and called Haeckel's work noncredible.Science soon published <“>Haeckel's Embryos: Fraud Rediscovered,<”> and Richardson's comments further reinvigorated criticism of Haeckel by others with articles in The American Biology Teacher, <“>Haeckel's Embryos and Evolution:

In 1997, developmental biologist Michael Richardson compared his research team's embryo photographs to Ernst Haeckel's 1874 embryo drawings and called Haeckel's work noncredible.Science soon published <“>Haeckel's Embryos: Fraud Rediscovered,<”> and Richardson's comments further reinvigorated criticism of Haeckel by others with articles in The American Biology Teacher, <“>Haeckel's Embryos and Evolution: Setting the Record Straight <”> and the New York Times, <“>Biology Text Illustrations more Fiction than Fact.<”> Meanwhile, others emphatically stated that the goal of comparative embryology was not to resurrect Haeckel's work. At the center of the controversy was Haeckel's no-longer-accepted idea of recapitulation. Haeckel believed that the development of an embryo revealed the adult stages of the organism's ancestors. Haeckel represented this idea with drawings of vertebrate embryos at similar developmental stages. This is Haeckel's embryo grid, the most common of all illustrations in biology textbooks. Yet, Haeckel's embryo grids are much more complex than any textbook explanation. I examined 240 high school biology textbooks, from 1907 to 2010, for embryo grids. I coded and categorized the grids according to accompanying discussion of (a) embryonic similarities (b) recapitulation, (c) common ancestors, and (d) evolution. The textbooks show changing narratives. Embryo grids gained prominence in the 1940s, and the trend continued until criticisms of Haeckel reemerged in the late 1990s, resulting in (a) grids with fewer organisms and developmental stages or (b) no grid at all. Discussion about embryos and evolution dropped significantly.
ContributorsWellner, Karen L (Author) / Maienschein, Jane (Thesis advisor) / Ellison, Karin D. (Committee member) / Creath, Richard (Committee member) / Robert, Jason S. (Committee member) / Laubichler, Manfred D. (Committee member) / Arizona State University (Publisher)
Created2014
153134-Thumbnail Image.png
Description
This dissertation shows that the central conceptual feature and explanatory motivation of theories of evolutionary directionality between 1890 and 1926 was as follows: morphological variation in the developing organism limits the possible outcomes of evolution in definite directions. Put broadly, these theories maintained a conceptual connection between development and evolution

This dissertation shows that the central conceptual feature and explanatory motivation of theories of evolutionary directionality between 1890 and 1926 was as follows: morphological variation in the developing organism limits the possible outcomes of evolution in definite directions. Put broadly, these theories maintained a conceptual connection between development and evolution as inextricably associated phenomena. This project develops three case studies. The first addresses the Swiss-German zoologist Theodor Eimer's book Organic Evolution (1890), which sought to undermine the work of noted evolutionist August Weismann. Second, the American paleontologist Edward Drinker Cope's Primary Factors (1896) developed a sophisticated system of inheritance that included the material of heredity and the energy needed to induce and modify ontogenetic phenomena. Third, the Russian biogeographer Leo Berg's Nomogenesis (1926) argued that the biological world is deeply structured in a way that prevents changes to morphology taking place in more than one or a few directions. These authors based their ideas on extensive empirical evidence of long-term evolutionary trajectories. They also sought to synthesize knowledge from a wide range of studies and proposed causes of evolution and development within a unified causal framework based on laws of evolution. While being mindful of the variation between these three theories, this project advances "Definitely Directed Evolution" as a term to designate these shared features. The conceptual coherence and reception of these theories shows that Definitely Directed Evolution from 1890 to 1926 is an important piece in reconstructing the wider history of theories of evolutionary directionality.
ContributorsUlett, Mark Andrew (Author) / Laubichler, Manfred D (Thesis advisor) / Hall, Brian K (Committee member) / Lynch, John (Committee member) / Maienschein, Jane (Committee member) / Smocovitis, Vassiliki B (Committee member) / Arizona State University (Publisher)
Created2014
150771-Thumbnail Image.png
Description
Corporations in biomedicine hold significant power and influence, in both political and personal spheres. The decisions these companies make about ethics are critically important, as they help determine what products are developed, how they are developed, how they are promoted, and potentially even how they are regulated. In the last

Corporations in biomedicine hold significant power and influence, in both political and personal spheres. The decisions these companies make about ethics are critically important, as they help determine what products are developed, how they are developed, how they are promoted, and potentially even how they are regulated. In the last fifteen years, for-profit private companies have been assembling bioethics committees to help resolve dilemmas that require informed deliberation about ethical, legal, scientific, and economic considerations. Private sector bioethics committees represent an important innovation in the governance of emerging technologies, with corporations taking a lead role in deciding what is ethically appropriate or problematic. And yet, we know very little about these committees, including their structures, memberships, mandates, authority, and impact. Drawing on an extensive literature review and qualitative analysis of semi-structured interviews with executives, scientists and board members, this dissertation provides an in-depth analysis of the Ethics and Public Policy Board at SmithKline Beecham, the Ethics Advisory Board at Advanced Cell Technology, and the Bioethics Committee at Eli Lilly and offers insights about how ideas of bioethics and governance are currently imagined and enacted within corporations. The SmithKline Beecham board was the first private sector bioethics committee; its mandate was to explore, in a comprehensive and balanced analysis, the ethics of macro trends in science and technology. The Advanced Cell Technology board was created to be like a watchdog for the company, to prevent them from making major errors. The Eli Lilly board is different than the others in that it is made up mostly of internal employees and does research ethics consultations within the company. These private sector bioethics committees evaluate and construct new boundaries between their private interests and the public values they claim to promote. Findings from this dissertation show that criticisms of private sector bioethics that focus narrowly on financial conflicts of interest and a lack of transparency obscure analysis of the ideas about governance (about expertise, credibility and authority) that emerge from these structures and hamper serious debate about the possible impacts of moving ethical deliberation from the public to the private sector.
ContributorsBrian, Jennifer (Author) / Robert, Jason S (Thesis advisor) / Maienschein, Jane (Committee member) / Hurlbut, James B (Committee member) / Sarewitz, Daniel (Committee member) / Brown, Mark B. (Committee member) / Moreno, Jonathan D. (Committee member) / Arizona State University (Publisher)
Created2012
156224-Thumbnail Image.png
Description
Evolution is the foundation of biology, yet it remains controversial even among college biology students. Acceptance of evolution is important for students if we want them to incorporate evolution into their scientific thinking. However, students’ religious beliefs are a consistent barrier to their acceptance of evolution due to a perceived

Evolution is the foundation of biology, yet it remains controversial even among college biology students. Acceptance of evolution is important for students if we want them to incorporate evolution into their scientific thinking. However, students’ religious beliefs are a consistent barrier to their acceptance of evolution due to a perceived conflict between religion and evolution. Using pre-post instructional surveys of students in introductory college biology, Study 1 establishes instructional strategies that can be effective for reducing students' perceived conflict between religion and evolution. Through interviews and qualitative analyses, Study 2 documents how instructors teaching evolution at public universities may be resistant towards implementing strategies that can reduce students' perceived conflict, perhaps because of their own lack of religious beliefs and lack of training and awareness about students' conflict with evolution. Interviews with religious students in Study 3 reveals that religious college biology students can perceive their instructors as unfriendly towards religion which can negatively impact these students' perceived conflict between religion and evolution. Study 4 explores how instructors at Christian universities, who share the same Christian backgrounds as their students, do not struggle with implementing strategies that reduce students' perceived conflict between religion and evolution. Cumulatively, these studies reveal a need for a new instructional framework for evolution education that takes into account the religious cultural difference between instructors who are teaching evolution and students who are learning evolution. As such, a new instructional framework is then described, Religious Cultural Competence in Evolution Education (ReCCEE), that can help instructors teach evolution in a way that can reduce students' perceived conflict between religion and evolution, increase student acceptance of evolution, and create more inclusive college biology classrooms for religious students.
ContributorsBarnes, Maryann Elizabeth (Author) / Brownell, Sara (Thesis advisor) / Nesse, Randolph (Committee member) / Collins, James (Committee member) / Husman, Jenefer (Committee member) / Maienschein, Jane (Committee member) / Arizona State University (Publisher)
Created2018
153750-Thumbnail Image.png
Description
How fast is evolution? In this dissertation I document a profound change that occurred around the middle of the 20th century in the way that ecologists conceptualized the temporal and spatial scales of adaptive evolution, through the lens of British plant ecologist Anthony David Bradshaw (1926–2008). In the early 1960s,

How fast is evolution? In this dissertation I document a profound change that occurred around the middle of the 20th century in the way that ecologists conceptualized the temporal and spatial scales of adaptive evolution, through the lens of British plant ecologist Anthony David Bradshaw (1926–2008). In the early 1960s, one prominent ecologist distinguished what he called “ecological time”—around ten generations—from “evolutionary time”— around half of a million years. For most ecologists working in the first half of the 20th century, evolution by natural selection was indeed a slow and plodding process, tangible in its products but not in its processes, and inconsequential for explaining most ecological phenomena. During the 1960s, however, many ecologists began to see evolution as potentially rapid and observable. Natural selection moved from the distant past—a remote explanans for both extant biological diversity and paleontological phenomena—to a measurable, quantifiable mechanism molding populations in real time.

The idea that adaptive evolution could be rapid and highly localized was a significant enabling condition for the emergence of ecological genetics in the second half of the 20th century. Most of what historians know about that conceptual shift and the rise of ecological genetics centers on the work of Oxford zoologist E. B. Ford and his students on polymorphism in Lepidotera, especially industrial melanism in Biston betularia. I argue that ecological genetics in Britain was not the brainchild of an infamous patriarch (Ford), but rather the outgrowth of a long tradition of pastureland research at plant breeding stations in Scotland and Wales, part of a discipline known as “genecology” or “experimental taxonomy.” Bradshaw’s investigative activities between 1948 and 1968 were an outgrowth of the specific brand of plant genecology practiced at the Welsh and Scottish Plant Breeding stations. Bradshaw generated evidence that plant populations with negligible reproductive isolation—separated by just a few meters—could diverge and adapt to contrasting environmental conditions in just a few generations. In Bradshaw’s research one can observe the crystallization of a new concept of rapid adaptive evolution, and the methodological and conceptual transformation of genecology into ecological genetics.
ContributorsPeirson, Bruce Richard Erick (Author) / Laubichler, Manfred D (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Creath, Richard (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2015
154832-Thumbnail Image.png
Description
Systems biology studies complex biological systems. It is an interdisciplinary field, with biologists working with non-biologists such as computer scientists, engineers, chemists, and mathematicians to address research problems applying systems’ perspectives. How these different researchers and their disciplines differently contributed to the advancement of this field over time is a

Systems biology studies complex biological systems. It is an interdisciplinary field, with biologists working with non-biologists such as computer scientists, engineers, chemists, and mathematicians to address research problems applying systems’ perspectives. How these different researchers and their disciplines differently contributed to the advancement of this field over time is a question worth examining. Did systems biology become a systems-oriented science or a biology-oriented science from 1992 to 2013?

This project utilized computational tools to analyze large data sets and interpreted the results from historical and philosophical perspectives. Tools deployed were derived from scientometrics, corpus linguistics, text-based analysis, network analysis, and GIS analysis to analyze more than 9000 articles (metadata and text) on systems biology. The application of these tools to a HPS project represents a novel approach.

The dissertation shows that systems biology has transitioned from a more mathematical, computational, and engineering-oriented discipline focusing on modeling to a more biology-oriented discipline that uses modeling as a means to address real biological problems. Also, the results show that bioengineering and medical research has increased within systems biology. This is reflected in the increase of the centrality of biology-related concepts such as cancer, over time. The dissertation also compares the development of systems biology in China with some other parts of the world, and reveals regional differences, such as a unique trajectory of systems biology in China related to a focus on traditional Chinese medicine.

This dissertation adds to the historiography of modern biology where few studies have focused on systems biology compared with the history of molecular biology and evolutionary biology.
ContributorsZou, Yawen (Author) / Laubichler, Manfred (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Creath, Richard (Committee member) / Ellison, Karin (Committee member) / Newfeld, Stuart (Committee member) / Arizona State University (Publisher)
Created2016
154280-Thumbnail Image.png
Description
The study of wasp societies (family Vespidae) has played a central role in advancing our knowledge of why social life evolves and how it functions. This dissertation asks: How have scientists generated and evaluated new concepts and theories about social life and its evolution by investigating wasp societies? It addresses

The study of wasp societies (family Vespidae) has played a central role in advancing our knowledge of why social life evolves and how it functions. This dissertation asks: How have scientists generated and evaluated new concepts and theories about social life and its evolution by investigating wasp societies? It addresses this question both from a narrative/historical and from a reflective/epistemological perspective. The historical narratives reconstruct the investigative pathways of the Italian entomologist Leo Pardi (1915-1990) and the British evolutionary biologist William D. Hamilton (1936-2000). The works of these two scientists represent respectively the beginning of our current understanding of immediate and evolutionary causes of social life. Chapter 1 shows how Pardi, in the 1940s, generated a conceptual framework to explain how wasp colonies function in terms of social and reproductive dominance. Chapter 2 shows how Hamilton, in the 1960s, attempted to evaluate his own theory of inclusive fitness by investigating social wasps. The epistemological reflections revolve around the idea of investigative framework for theory evaluation. Chapter 3 draws on the analysis of important studies on social wasps from the 1960s and 1970s and provides an account of theory evaluation in the form of an investigative framework. The framework shows how inferences from empirical data (bottom-up) and inferences from the theory (top-down) inform one another in the generation of hypotheses, predictions and statements about phenomena of social evolution. It provides an alternative to existing philosophical accounts of scientific inquiry and theory evaluation, which keep a strong, hierarchical distinction between inferences from the theory and inferences from the data. The historical narratives in this dissertation show that important scientists have advanced our knowledge of complex biological phenomena by constantly interweaving empirical, conceptual, and theoretical work. The epistemological reflections argue that we need holistic frameworks that account for how multiple scientific practices synergistically contribute to advance our knowledge of complex phenomena. Both narratives and reflections aim to inspire and inform future work in social evolution capitalizing on lessons learnt from the past.
ContributorsCaniglia, Guido (Author) / Laubichler, Manfred (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Creath, Richard (Committee member) / Mitchell, Sandra (Committee member) / Arizona State University (Publisher)
Created2016
155035-Thumbnail Image.png
Description
A central task for historians and philosophers of science is to characterize and analyze the epistemic practices in a given science. The epistemic practice of a science includes its explanatory goals as well as the methods used to achieve these goals. This dissertation addresses the epistemic practices in gene expression

A central task for historians and philosophers of science is to characterize and analyze the epistemic practices in a given science. The epistemic practice of a science includes its explanatory goals as well as the methods used to achieve these goals. This dissertation addresses the epistemic practices in gene expression research spanning the mid-twentieth century to the twenty-first century. The critical evaluation of the standard historical narratives of the molecular life sciences clarifies certain philosophical problems with respect to reduction, emergence, and representation, and offers new ways with which to think about the development of scientific research and the nature of scientific change.

The first chapter revisits some of the key experiments that contributed to the development of the repression model of genetic regulation in the lac operon and concludes that the early research on gene expression and genetic regulation depict an iterative and integrative process, which was neither reductionist nor holist. In doing so, it challenges a common application of a conceptual framework in the history of biology and offers an alternative framework. The second chapter argues that the concept of emergence in the history and philosophy of biology is too ambiguous to account for the current research in post-genomic molecular biology and it is often erroneously used to argue against some reductionist theses. The third chapter investigates the use of network representations of gene expression in developmental evolution research and takes up some of the conceptual and methodological problems it has generated. The concluding comments present potential avenues for future research arising from each substantial chapter.

In sum, this dissertation argues that the epistemic practices of gene expression research are an iterative and integrative process, which produces theoretical representations of the complex interactions in gene expression as networks. Moreover, conceptualizing these interactions as networks constrains empirical research strategies by the limited number of ways in which gene expression can be controlled through general rules of network interactions. Making these strategies explicit helps to clarify how they can explain the dynamic and adaptive features of genomes.
ContributorsRacine, Valerie (Author) / Maienschein, Jane (Thesis advisor) / Laubichler, Manfred D (Thesis advisor) / Creath, Richard (Committee member) / Newfeld, Stuart (Committee member) / Morange, Michel (Committee member) / Arizona State University (Publisher)
Created2016