Matching Items (69)
Filtering by

Clear all filters

156297-Thumbnail Image.png
Description
Social Computing is an area of computer science concerned with dynamics of communities and cultures, created through computer-mediated social interaction. Various social media platforms, such as social network services and microblogging, enable users to come together and create social movements expressing their opinions on diverse sets of issues, events, complaints,

Social Computing is an area of computer science concerned with dynamics of communities and cultures, created through computer-mediated social interaction. Various social media platforms, such as social network services and microblogging, enable users to come together and create social movements expressing their opinions on diverse sets of issues, events, complaints, grievances, and goals. Methods for monitoring and summarizing these types of sociopolitical trends, its leaders and followers, messages, and dynamics are needed. In this dissertation, a framework comprising of community and content-based computational methods is presented to provide insights for multilingual and noisy political social media content. First, a model is developed to predict the emergence of viral hashtag breakouts, using network features. Next, another model is developed to detect and compare individual and organizational accounts, by using a set of domain and language-independent features. The third model exposes contentious issues, driving reactionary dynamics between opposing camps. The fourth model develops community detection and visualization methods to reveal underlying dynamics and key messages that drive dynamics. The final model presents a use case methodology for detecting and monitoring foreign influence, wherein a state actor and news media under its control attempt to shift public opinion by framing information to support multiple adversarial narratives that facilitate their goals. In each case, a discussion of novel aspects and contributions of the models is presented, as well as quantitative and qualitative evaluations. An analysis of multiple conflict situations will be conducted, covering areas in the UK, Bangladesh, Libya and the Ukraine where adversarial framing lead to polarization, declines in social cohesion, social unrest, and even civil wars (e.g., Libya and the Ukraine).
ContributorsAlzahrani, Sultan (Author) / Davulcu, Hasan (Thesis advisor) / Corman, Steve R. (Committee member) / Li, Baoxin (Committee member) / Hsiao, Ihan (Committee member) / Arizona State University (Publisher)
Created2018
156799-Thumbnail Image.png
Description
Cyber-systems and networks are the target of different types of cyber-threats and attacks, which are becoming more common, sophisticated, and damaging. Those attacks can vary in the way they are performed. However, there are similar strategies

and tactics often used because they are time-proven to be effective. The motivations behind cyber-attacks

Cyber-systems and networks are the target of different types of cyber-threats and attacks, which are becoming more common, sophisticated, and damaging. Those attacks can vary in the way they are performed. However, there are similar strategies

and tactics often used because they are time-proven to be effective. The motivations behind cyber-attacks play an important role in designating how attackers plan and proceed to achieve their goals. Generally, there are three categories of motivation

are: political, economical, and socio-cultural motivations. These indicate that to defend against possible attacks in an enterprise environment, it is necessary to consider what makes such an enterprise environment a target. That said, we can understand

what threats to consider and how to deploy the right defense system. In other words, detecting an attack depends on the defenders having a clear understanding of why they become targets and what possible attacks they should expect. For instance,

attackers may preform Denial of Service (DoS), or even worse Distributed Denial of Service (DDoS), with intention to cause damage to targeted organizations and prevent legitimate users from accessing their services. However, in some cases, attackers are very skilled and try to hide in a system undetected for a long period of time with the incentive to steal and collect data rather than causing damages.

Nowadays, not only the variety of attack types and the way they are launched are important. However, advancement in technology is another factor to consider. Over the last decades, we have experienced various new technologies. Obviously, in the beginning, new technologies will have their own limitations before they stand out. There are a number of related technical areas whose understanding is still less than satisfactory, and in which long-term research is needed. On the other hand, these new technologies can boost the advancement of deploying security solutions and countermeasures when they are carefully adapted. That said, Software Defined Networking i(SDN), its related security threats and solutions, and its adaption in enterprise environments bring us new chances to enhance our security solutions. To reach the optimal level of deploying SDN technology in enterprise environments, it is important to consider re-evaluating current deployed security solutions in traditional networks before deploying them to SDN-based infrastructures. Although DDoS attacks are a bit sinister, there are other types of cyber-threats that are very harmful, sophisticated, and intelligent. Thus, current security defense solutions to detect DDoS cannot detect them. These kinds of attacks are complex, persistent, and stealthy, also referred to Advanced Persistent Threats (APTs) which often leverage the bot control and remotely access valuable information. APT uses multiple stages to break into a network. APT is a sort of unseen, continuous and long-term penetrative network and attackers can bypass the existing security detection systems. It can modify and steal the sensitive data as well as specifically cause physical damage the target system. In this dissertation, two cyber-attack motivations are considered: sabotage, where the motive is the destruction; and information theft, where attackers aim to acquire invaluable information (customer info, business information, etc). I deal with two types of attacks (DDoS attacks and APT attacks) where DDoS attacks are classified under sabotage motivation category, and the APT attacks are classified under information theft motivation category. To detect and mitigate each of these attacks, I utilize the ease of programmability in SDN and its great platform for implementation, dynamic topology changes, decentralized network management, and ease of deploying security countermeasures.
ContributorsAlshamrani, Adel (Author) / Huang, Dijiang (Thesis advisor) / Doupe, Adam (Committee member) / Ahn, Gail-Joon (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2018
157174-Thumbnail Image.png
Description
Fraud is defined as the utilization of deception for illegal gain by hiding the true nature of the activity. While organizations lose around $3.7 trillion in revenue due to financial crimes and fraud worldwide, they can affect all levels of society significantly. In this dissertation, I focus on credit card

Fraud is defined as the utilization of deception for illegal gain by hiding the true nature of the activity. While organizations lose around $3.7 trillion in revenue due to financial crimes and fraud worldwide, they can affect all levels of society significantly. In this dissertation, I focus on credit card fraud in online transactions. Every online transaction comes with a fraud risk and it is the merchant's liability to detect and stop fraudulent transactions. Merchants utilize various mechanisms to prevent and manage fraud such as automated fraud detection systems and manual transaction reviews by expert fraud analysts. Many proposed solutions mostly focus on fraud detection accuracy and ignore financial considerations. Also, the highly effective manual review process is overlooked. First, I propose Profit Optimizing Neural Risk Manager (PONRM), a selective classifier that (a) constitutes optimal collaboration between machine learning models and human expertise under industrial constraints, (b) is cost and profit sensitive. I suggest directions on how to characterize fraudulent behavior and assess the risk of a transaction. I show that my framework outperforms cost-sensitive and cost-insensitive baselines on three real-world merchant datasets. While PONRM is able to work with many supervised learners and obtain convincing results, utilizing probability outputs directly from the trained model itself can pose problems, especially in deep learning as softmax output is not a true uncertainty measure. This phenomenon, and the wide and rapid adoption of deep learning by practitioners brought unintended consequences in many situations such as in the infamous case of Google Photos' racist image recognition algorithm; thus, necessitated the utilization of the quantified uncertainty for each prediction. There have been recent efforts towards quantifying uncertainty in conventional deep learning methods (e.g., dropout as Bayesian approximation); however, their optimal use in decision making is often overlooked and understudied. Thus, I present a mixed-integer programming framework for selective classification called MIPSC, that investigates and combines model uncertainty and predictive mean to identify optimal classification and rejection regions. I also extend this framework to cost-sensitive settings (MIPCSC) and focus on the critical real-world problem, online fraud management and show that my approach outperforms industry standard methods significantly for online fraud management in real-world settings.
ContributorsYildirim, Mehmet Yigit (Author) / Davulcu, Hasan (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Huang, Dijiang (Committee member) / Hsiao, Ihan (Committee member) / Arizona State University (Publisher)
Created2019
157248-Thumbnail Image.png
Description
This action research project centered on a group of instructional technology professionals who provide support to instructors at a public university in the United States. The practical goal of this project was to increase collaboration within the team, and to encourage alignment of the team’s efforts in relation to the

This action research project centered on a group of instructional technology professionals who provide support to instructors at a public university in the United States. The practical goal of this project was to increase collaboration within the team, and to encourage alignment of the team’s efforts in relation to the university’s proposed redesign of its general education curriculum. Using the communities of practice perspective as a model for the team’s development, participants engaged in a sixteen-week activity in which they studied and discussed aspects of the proposed curriculum, and then used that knowledge to observe classes and compare the extent to which classroom pedagogy at the time aligned with the aims of the proposed curriculum. This qualitative action research study then explored how the team used these experiences to construct knowledge and the extent to which the group came to resemble a community of practice. Additionally, this study explored the changes that took place in the group’s capacity to interpret instructional environments. The first major finding was that the group’s identity changed from being one characterized by relationship management with their clientele to one that aligned with the institution’s instructional priorities and could be projected into the future to devise coordinated plans in support of those priorities. A second major finding was that the team developed a group-specific language and a rudimentary capacity to interpret instructional environments as a group.
ContributorsLang, Andrew (Author) / Gee, Elisabeth (Thesis advisor) / Koro-Ljungberg, Mirka (Committee member) / Hogan, Kelly (Committee member) / Arizona State University (Publisher)
Created2019
157052-Thumbnail Image.png
Description
In the artificial intelligence literature, three forms of reasoning are commonly employed to understand agent behavior: inductive, deductive, and abductive.  More recently, data-driven approaches leveraging ideas such as machine learning, data mining, and social network analysis have gained popularity. While data-driven variants of the aforementioned forms of reasoning have been applied

In the artificial intelligence literature, three forms of reasoning are commonly employed to understand agent behavior: inductive, deductive, and abductive.  More recently, data-driven approaches leveraging ideas such as machine learning, data mining, and social network analysis have gained popularity. While data-driven variants of the aforementioned forms of reasoning have been applied separately, there is little work on how data-driven approaches across all three forms relate and lend themselves to practical applications. Given an agent behavior and the percept sequence, how one can identify a specific outcome such as the likeliest explanation? To address real-world problems, it is vital to understand the different types of reasonings which can lead to better data-driven inference.  

This dissertation has laid the groundwork for studying these relationships and applying them to three real-world problems. In criminal modeling, inductive and deductive reasonings are applied to early prediction of violent criminal gang members. To address this problem the features derived from the co-arrestee social network as well as geographical and temporal features are leveraged. Then, a data-driven variant of geospatial abductive inference is studied in missing person problem to locate the missing person. Finally, induction and abduction reasonings are studied for identifying pathogenic accounts of a cascade in social networks.
ContributorsShaabani, Elham (Author) / Shakarian, Paulo (Thesis advisor) / Davulcu, Hasan (Committee member) / Maciejewski, Ross (Committee member) / Decker, Scott (Committee member) / Arizona State University (Publisher)
Created2019
156951-Thumbnail Image.png
Description
Visual processing in social media platforms is a key step in gathering and understanding information in the era of Internet and big data. Online data is rich in content, but its processing faces many challenges including: varying scales for objects of interest, unreliable and/or missing labels, the inadequacy of single

Visual processing in social media platforms is a key step in gathering and understanding information in the era of Internet and big data. Online data is rich in content, but its processing faces many challenges including: varying scales for objects of interest, unreliable and/or missing labels, the inadequacy of single modal data and difficulty in analyzing high dimensional data. Towards facilitating the processing and understanding of online data, this dissertation primarily focuses on three challenges that I feel are of great practical importance: handling scale differences in computer vision tasks, such as facial component detection and face retrieval, developing efficient classifiers using partially labeled data and noisy data, and employing multi-modal models and feature selection to improve multi-view data analysis. For the first challenge, I propose a scale-insensitive algorithm to expedite and accurately detect facial landmarks. For the second challenge, I propose two algorithms that can be used to learn from partially labeled data and noisy data respectively. For the third challenge, I propose a new framework that incorporates feature selection modules into LDA models.
ContributorsZhou, Xu (Author) / Li, Baoxin (Thesis advisor) / Hsiao, Sharon (Committee member) / Davulcu, Hasan (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2018
157077-Thumbnail Image.png
Description
Networks naturally appear in many high-impact applications. The simplest model of networks is single-layered networks, where the nodes are from the same domain and the links are of the same type. However, as the world is highly coupled, nodes from different application domains tend to be interdependent on each

Networks naturally appear in many high-impact applications. The simplest model of networks is single-layered networks, where the nodes are from the same domain and the links are of the same type. However, as the world is highly coupled, nodes from different application domains tend to be interdependent on each other, forming a more complex network model called multi-layered networks.

Among the various aspects of network studies, network connectivity plays an important role in a myriad of applications. The diversified application areas have spurred numerous connectivity measures, each designed for some specific tasks. Although effective in their own fields, none of the connectivity measures is generally applicable to all the tasks. Moreover, existing connectivity measures are predominantly based on single-layered networks, with few attempts made on multi-layered networks.

Most connectivity analyzing methods assume that the input network is static and accurate, which is not realistic in many applications. As real-world networks are evolving, their connectivity scores would vary by time as well, making it imperative to keep track of those changing parameters in a timely manner. Furthermore, as the observed links in the input network may be inaccurate due to noise and incomplete data sources, it is crucial to infer a more accurate network structure to better approximate its connectivity scores.

The ultimate goal of connectivity studies is to optimize the connectivity scores via manipulating the network structures. For most complex measures, the hardness of the optimization problem still remains unknown. Meanwhile, current optimization methods are mainly ad-hoc solutions for specific types of connectivity measures on single-layered networks. No optimization framework has ever been proposed to tackle a wider range of connectivity measures on complex networks.

In this thesis, an in-depth study of connectivity measures, inference, and optimization problems will be proposed. Specifically, a unified connectivity measure model will be introduced to unveil the commonality among existing connectivity measures. For the connectivity inference aspect, an effective network inference method and connectivity tracking framework will be described. Last, a generalized optimization framework will be built to address the connectivity minimization/maximization problems on both single-layered and multi-layered networks.
ContributorsChen, Chen (Author) / Tong, Hanghang (Thesis advisor) / Davulcu, Hasan (Committee member) / Sen, Arunabha (Committee member) / Subrahmanian, V.S. (Committee member) / Ying, Lei (Committee member) / Arizona State University (Publisher)
Created2019
154403-Thumbnail Image.png
Description
Traditionally, visualization is one of the most important and commonly used methods of generating insight into large scale data. Particularly for spatiotemporal data, the translation of such data into a visual form allows users to quickly see patterns, explore summaries and relate domain knowledge about underlying geographical phenomena that would

Traditionally, visualization is one of the most important and commonly used methods of generating insight into large scale data. Particularly for spatiotemporal data, the translation of such data into a visual form allows users to quickly see patterns, explore summaries and relate domain knowledge about underlying geographical phenomena that would not be apparent in tabular form. However, several critical challenges arise when visualizing and exploring these large spatiotemporal datasets. While, the underlying geographical component of the data lends itself well to univariate visualization in the form of traditional cartographic representations (e.g., choropleth, isopleth, dasymetric maps), as the data becomes multivariate, cartographic representations become more complex. To simplify the visual representations, analytical methods such as clustering and feature extraction are often applied as part of the classification phase. The automatic classification can then be rendered onto a map; however, one common issue in data classification is that items near a classification boundary are often mislabeled.

This thesis explores methods to augment the automated spatial classification by utilizing interactive machine learning as part of the cluster creation step. First, this thesis explores the design space for spatiotemporal analysis through the development of a comprehensive data wrangling and exploratory data analysis platform. Second, this system is augmented with a novel method for evaluating the visual impact of edge cases for multivariate geographic projections. Finally, system features and functionality are demonstrated through a series of case studies, with key features including similarity analysis, multivariate clustering, and novel visual support for cluster comparison.
ContributorsZhang, Yifan (Author) / Maciejewski, Ross (Thesis advisor) / Mack, Elizabeth (Committee member) / Liu, Huan (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2016
154769-Thumbnail Image.png
Description
Stock market news and investing tips are popular topics in Twitter. In this dissertation, first I utilize a 5-year financial news corpus comprising over 50,000 articles collected from the NASDAQ website matching the 30 stock symbols in Dow Jones Index (DJI) to train a directional stock price prediction system based

Stock market news and investing tips are popular topics in Twitter. In this dissertation, first I utilize a 5-year financial news corpus comprising over 50,000 articles collected from the NASDAQ website matching the 30 stock symbols in Dow Jones Index (DJI) to train a directional stock price prediction system based on news content. Next, I proceed to show that information in articles indicated by breaking Tweet volumes leads to a statistically significant boost in the hourly directional prediction accuracies for the DJI stock prices mentioned in these articles. Secondly, I show that using document-level sentiment extraction does not yield a statistically significant boost in the directional predictive accuracies in the presence of other 1-gram keyword features. Thirdly I test the performance of the system on several time-frames and identify the 4 hour time-frame for both the price charts and for Tweet breakout detection as the best time-frame combination. Finally, I develop a set of price momentum based trade exit rules to cut losing trades early and to allow the winning trades run longer. I show that the Tweet volume breakout based trading system with the price momentum based exit rules not only improves the winning accuracy and the return on investment, but it also lowers the maximum drawdown and achieves the highest overall return over maximum drawdown.
ContributorsAlostad, Hana (Author) / Davulcu, Hasan (Thesis advisor) / Corman, Steven (Committee member) / Tong, Hanghang (Committee member) / He, Jingrui (Committee member) / Arizona State University (Publisher)
Created2016
154774-Thumbnail Image.png
Description
Internet and social media devices created a new public space for debate on political

and social topics (Papacharissi 2002; Himelboim 2010). Hotly debated issues

span all spheres of human activity; from liberal vs. conservative politics, to radical

vs. counter-radical religious debate, to climate change debate in scientific community,

to globalization debate in economics, and

Internet and social media devices created a new public space for debate on political

and social topics (Papacharissi 2002; Himelboim 2010). Hotly debated issues

span all spheres of human activity; from liberal vs. conservative politics, to radical

vs. counter-radical religious debate, to climate change debate in scientific community,

to globalization debate in economics, and to nuclear disarmament debate in

security. Many prominent ’camps’ have emerged within Internet debate rhetoric and

practice (Dahlberg, n.d.).

In this research I utilized feature extraction and model fitting techniques to process

the rhetoric found in the web sites of 23 Indonesian Islamic religious organizations,

later with 26 similar organizations from the United Kingdom to profile their

ideology and activity patterns along a hypothesized radical/counter-radical scale, and

presented an end-to-end system that is able to help researchers to visualize the data

in an interactive fashion on a time line. The subject data of this study is the articles

downloaded from the web sites of these organizations dating from 2001 to 2011,

and in 2013. I developed algorithms to rank these organizations by assigning them

to probable positions on the scale. I showed that the developed Rasch model fits

the data using Andersen’s LR-test (likelihood ratio). I created a gold standard of

the ranking of these organizations through an expertise elicitation tool. Then using

my system I computed expert-to-expert agreements, and then presented experimental

results comparing the performance of three baseline methods to show that the

Rasch model not only outperforms the baseline methods, but it was also the only

system that performs at expert-level accuracy.

I developed an end-to-end system that receives list of organizations from experts,

mines their web corpus, prepare discourse topic lists with expert support, and then

ranks them on scales with partial expert interaction, and finally presents them on an

easy to use web based analytic system.
ContributorsTikves, Sukru (Author) / Davulcu, Hasan (Thesis advisor) / Sen, Arunabha (Committee member) / Liu, Huan (Committee member) / Woodward, Mark (Committee member) / Arizona State University (Publisher)
Created2016