Matching Items (4)
Filtering by

Clear all filters

172009-Thumbnail Image.png
Description
Cyber operations are a complex sociotechnical system where humans and computers are operating in an environments in constant flux, as new technology and procedures are applied. Once inside the network, establishing a foothold, or beachhead, malicious actors can collect sensitive information, scan targets, and execute an attack.Increasing defensive capabilities through

Cyber operations are a complex sociotechnical system where humans and computers are operating in an environments in constant flux, as new technology and procedures are applied. Once inside the network, establishing a foothold, or beachhead, malicious actors can collect sensitive information, scan targets, and execute an attack.Increasing defensive capabilities through cyber deception shows great promise by providing an opportunity to delay and disrupt an attacker once network perimeter security has already been breached. Traditional Human Factors research and methods are designed to mitigate human limitations (e.g., mental, physical) to improve performance. These methods can also be used combatively to upend performance. Oppositional Human Factors (OHF), seek to strategically capitalize on cognitive limitations by eliciting decision-making errors and poor usability. Deceptive tactics to elicit decision-making biases might infiltrate attacker processes with uncertainty and make the overall attack economics unfavorable and cause an adversary to make mistakes and waste resources. Two online experimental platforms were developed to test the Sunk Cost Fallacy in an interactive, gamified, and abstracted version of cyber attacker activities. This work presents the results of the Cypher platform. Offering a novel approach to understand decision-making and the Sunk Cost Fallacy influenced by factors of uncertainty, project completion and difficulty on progress decisions. Results demonstrate these methods are effective in delaying attacker forward progress, while further research is needed to fully understand the context in which decision-making limitations do and do not occur. The second platform, Attack Surface, is described. Limitations and lessons learned are presented for future work.
ContributorsJohnson, Chelsea Kae (Author) / Gutzwiller, Robert S (Thesis advisor) / Cooke, Nancy (Committee member) / Shade, Temmie (Committee member) / Ferguson-Walter, Kimberly (Committee member) / Roscoe, Rod (Committee member) / Gray, Rob (Committee member) / Arizona State University (Publisher)
Created2022
189315-Thumbnail Image.png
Description
The purpose of the present study is to explore a potential rehabilitation alternative/additive, when time, insurance, finances, or lack of knowledge are limitations for mild traumatic brain injury (mTBI) executive function (EF) rehabilitation. The experimental intervention involved two sets of participants an experimental group and a control group. Participants within

The purpose of the present study is to explore a potential rehabilitation alternative/additive, when time, insurance, finances, or lack of knowledge are limitations for mild traumatic brain injury (mTBI) executive function (EF) rehabilitation. The experimental intervention involved two sets of participants an experimental group and a control group. Participants within the experimental and control groups partook in initial (week 1) and final (week 6) EF and TBI assessments. The experimental group additionally participated in four weeks (weeks 2 - 5) of an experimental intervention in beta stage of a web-based application. The aim of the intervention was to train EF skills planning, organization, and cognitive flexibility through serious gamification. At the conclusion of the study, it was observed that participants within the experimental group achieved higher scores on the experimental executive function assessment when compared to the control group. The difference in scores can be attributed to the weekly participation in executive function training.
ContributorsEzenyilimba, Akuadasuo (Author) / Cooke, Nancy (Thesis advisor) / McDaniel, Troy (Committee member) / Gray, Rob (Committee member) / Arizona State University (Publisher)
Created2023
171933-Thumbnail Image.png
Description
As people begin to live longer and the population shifts to having more olderadults on Earth than young children, radical solutions will be needed to ease the burden on society. It will be essential to develop technology that can age with the individual. One solution is to keep older adults in their

As people begin to live longer and the population shifts to having more olderadults on Earth than young children, radical solutions will be needed to ease the burden on society. It will be essential to develop technology that can age with the individual. One solution is to keep older adults in their homes longer through smart home and smart living technology, allowing them to age in place. People have many choices when choosing where to age in place, including their own homes, assisted living facilities, nursing homes, or family members. No matter where people choose to age, they may face isolation and financial hardships. It is crucial to keep finances in mind when developing Smart Home technology. Smart home technologies seek to allow individuals to stay inside their homes for as long as possible, yet little work looks at how we can use technology in different life stages. Robots are poised to impact society and ease burns at home and in the workforce. Special attention has been given to social robots to ease isolation. As social robots become accepted into society, researchers need to understand how these robots should mimic natural conversation. My work attempts to answer this question within social robotics by investigating how to make conversational robots natural and reciprocal. I investigated this through a 2x2 Wizard of Oz between-subjects user study. The study lasted four months, testing four different levels of interactivity with the robot. None of the levels were significantly different from the others, an unexpected result. I then investigated the robot’s personality, the participant’s trust, and the participant’s acceptance of the robot and how that influenced the study.
ContributorsMiller, Jordan (Author) / McDaniel, Troy (Thesis advisor) / Michael, Katina (Committee member) / Cooke, Nancy (Committee member) / Bryan, Chris (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2022
158201-Thumbnail Image.png
Description
Nuclear Power Plants (NPP) have complex and dynamic work environments. Nuclear safety and organizational management rely largely on human performance and teamwork. Multi-disciplinary teams work interdependently to complete cognitively demanding tasks such as outage control. The outage control period has the highest risk of core damage and radiation exposure. Thus,

Nuclear Power Plants (NPP) have complex and dynamic work environments. Nuclear safety and organizational management rely largely on human performance and teamwork. Multi-disciplinary teams work interdependently to complete cognitively demanding tasks such as outage control. The outage control period has the highest risk of core damage and radiation exposure. Thus, team coordination and communication are critically important during this period. The purpose of this thesis is to review and synthesize teamwork studies in NPPs, outage management studies, official Licensee Event Reports (LER), and Inspection Reports (IRs) to characterize team brittleness in NPP systems. Focusing on team brittleness can provide critical insights about how to increase NPP robustness and to create a resilient NPP system. For this reason, more than 900 official LERs and IRs reports were analyzed to understand human and team errors in the United States (US) nuclear power plants. The findings were evaluated by subject matter experts to create a better understanding of team cognition in US nuclear power plants. The results of analysis indicated that human errors could be caused by individual human errors, team errors, procedural errors, design errors, or organizational errors. In addition to these, some of the findings showed that number of reactors, operation year and operation mode could affect the number of reported incidents.
ContributorsAKCA, SALLY SALIHA (Author) / Cooke, Nancy (Thesis advisor) / Niemczyk, Mary (Committee member) / Branaghan, Russell (Committee member) / Arizona State University (Publisher)
Created2020