Matching Items (17)
Filtering by

Clear all filters

152313-Thumbnail Image.png
Description
Lunar Reconnaissance Orbiter (LRO) and MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft missions provide new data for investigating the youngest impact craters on Mercury and the Moon, along with lunar volcanic end-members: ancient silicic and young basaltic volcanism. The LRO Wide Angle Camera (WAC) and Narrow Angle Camera

Lunar Reconnaissance Orbiter (LRO) and MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft missions provide new data for investigating the youngest impact craters on Mercury and the Moon, along with lunar volcanic end-members: ancient silicic and young basaltic volcanism. The LRO Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) in-flight absolute radiometric calibration used ground-based Robotic Lunar Observatory and Hubble Space Telescope data as standards. In-flight radiometric calibration is a small aspect of the entire calibration process but an important improvement upon the pre-flight measurements. Calibrated reflectance data are essential for comparing images from LRO to missions like MESSENGER, thus enabling science through engineering. Relative regolith optical maturation rates on Mercury and the Moon are estimated by comparing young impact crater densities and impact ejecta reflectance, thus empirically testing previous models of faster rates for Mercury relative to the Moon. Regolith maturation due to micrometeorite impacts and solar wind sputtering modies UV-VIS-NIR surface spectra, therefore understanding maturation rates is critical for interpreting remote sensing data from airless bodies. Results determined the regolith optical maturation rate on Mercury is 2 to 4 times faster than on the Moon. The Gruithuisen Domes, three lunar silicic volcanoes, represent relatively rare lunar lithologies possibly similar to rock fragments found in the Apollo sample collection. Lunar nonmare silicic volcanism has implications for lunar magmatic evolution. I estimated a rhyolitic composition using morphologic comparisons of the Gruithuisen Domes, measured from NAC 2-meter-per-pixel digital topographic models (DTMs), with terrestrial silicic dome morphologies and laboratory models of viscoplastic dome growth. Small, morphologically sharp irregular mare patches (IMPs) provide evidence for recent lunar volcanism widely distributed across the nearside lunar maria, which has implications for long-lived nearside magmatism. I identified 75 IMPs (100-5000 meters in dimension) in NAC images and DTMs, and determined stratigraphic relationships between units common to all IMPs. Crater counts give model ages from 18-58 Ma, and morphologic comparisons with young lunar features provided an additional age constraint of <100 Ma. The IMPs formed as low-volume basaltic eruptions significantly later than previous evidence of lunar mare basalt volcanism's end (1-1.2 Ga).
ContributorsBraden, Sarah E (Author) / Robinson, Mark S (Thesis advisor) / Bell, James F. (Committee member) / Christensen, Philip R. (Committee member) / Clarke, Amanda B (Committee member) / Lawrence, Samuel J (Committee member) / Arizona State University (Publisher)
Created2013
150269-Thumbnail Image.png
Description
There are many lines of evidence for anisotropy at all scales in the explosions of core collapse supernovae, e.g. visual inspection of the images of resolved supernova remnants, polarization measurements, velocity profiles, "natal kicks" of neutron stars, or spectroscopic observations of different regions of remnants. Theoretical stability considerations and detailed

There are many lines of evidence for anisotropy at all scales in the explosions of core collapse supernovae, e.g. visual inspection of the images of resolved supernova remnants, polarization measurements, velocity profiles, "natal kicks" of neutron stars, or spectroscopic observations of different regions of remnants. Theoretical stability considerations and detailed numerical simulations have shown that Rayleigh-Taylor (RT) instabilities arise in the star after the explosion, which leads to the early fragmentation of parts of the ejecta. The clumps thus created are of interest to a variety of topics, one of them being the formation environment of the solar system. There is a high probability that the solar system formed in the vicinity of a massive star that, shortly after its formation, exploded as a core collapse supernova. As argued in this thesis as well as other works, a core collapse supernova generally is a good candidate for chemically enriching the forming solar system with material. As forming proto--planetary systems in general have a high probability of being contaminated with supernova material, a method was developed for detecting tracer elements indicative supernova contamination in proto--planetary systems.The degree of the anisotropy of the supernova explosion can have dramatic effects on the mode of delivery of that material to the solar system, or proto--planetary systems in general. Thus it is of particular interest to be able to predict the structure of the supernova ejecta. Numerical simulations of the explosions of core collapse supernovae were done in 3 dimensions in order to study the formation of structure. It is found that RT instabilities result in clumps in the He- and C+O rich regions in the exploding star that are overdense by 1-2 orders of magnitude. These clumps are potential candidates for enriching the solar system with material. In the course of the further evolution of the supernova remnant, these RT clumps are likely to evolve into ejecta knots of the type observed in the Cassiopeia A supernova remnant.
ContributorsEllinger, Carola I (Author) / Young, Patrick A (Thesis advisor) / Desch, Steven J (Committee member) / Timmes, Francis (Committee member) / Scannapieco, Evan (Committee member) / Lunardini, Cecilia (Committee member) / Arizona State University (Publisher)
Created2011
156004-Thumbnail Image.png
Description
Water is a critical resource for future human missions, and is necessary for understanding the evolution of the Solar System. The Moon and Mars have water in various forms and are therefore high-priority targets in the search for accessible extraterrestrial water. Complementary remote sensing analyses coupled with laboratory

Water is a critical resource for future human missions, and is necessary for understanding the evolution of the Solar System. The Moon and Mars have water in various forms and are therefore high-priority targets in the search for accessible extraterrestrial water. Complementary remote sensing analyses coupled with laboratory and field studies are necessary to provide a scientific context for future lunar and Mars exploration. In this thesis, I use multiple techniques to investigate the presence of water-ice at the lunar poles and the properties of martian chloride minerals, whose evolution is intricately linked with liquid water.

Permanently shadowed regions (PSRs) at the lunar poles may contain substantial water ice, but radar signatures at PSRs could indicate water ice or large block populations. Mini-RF radar and Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) products were used to assess block abundances where radar signatures indicated potential ice deposits. While the majority of PSRs in this study indicated large block populations and a low likelihood of water ice, one crater – Rozhdestvenskiy N – showed indirect indications of water ice in its interior.

Chloride deposits indicate regions where the last substantial liquid water existed on Mars. Major ion abundances and expected precipitation sequences of terrestrial chloride brines could provide context for assessing the provenance of martian chloride deposits. Chloride minerals are most readily distinguished in the far-infrared (45+ μm), where their fundamental absorption features are strongest. Multiple chloride compositions and textures were characterized in far-infrared emission for the first time. Systematic variations in the spectra were observed; these variations will allow chloride mineralogy to be determined and large variations in texture to be constrained.

In the present day, recurring slope lineae (RSL) may indicate water flow, but fresh water is not stable on Mars. However, dissolved chloride could allow liquid water to flow transiently. Using Thermal Emission Imaging System (THEMIS) data, I determined that RSL are most likely not fed by chloride-rich brines on Mars. Substantial amounts of salt would be consumed to produce a surface water flow; therefore, these features are therefore thought to instead be surface darkening due to capillary wicking.
ContributorsMitchell, Julie (Author) / Christensen, Philip R. (Thesis advisor) / Bell Iii, James F (Committee member) / Desch, Steven J (Committee member) / Hartnett, Hilairy E (Committee member) / Robinson, Mark S (Committee member) / Arizona State University (Publisher)
Created2017
156391-Thumbnail Image.png
Description
Planetary surface studies across a range of spatial scales are key to interpreting modern and ancient operative processes and to meeting strategic mission objectives for robotic planetary science exploration. At the meter-scale and below, planetary regolith conducts heat at a rate that depends on the physical properties of the regolith

Planetary surface studies across a range of spatial scales are key to interpreting modern and ancient operative processes and to meeting strategic mission objectives for robotic planetary science exploration. At the meter-scale and below, planetary regolith conducts heat at a rate that depends on the physical properties of the regolith particles, such as particle size, sorting, composition, and shape. Radiometric temperature measurements thus provide the means to determine regolith properties and rock abundance from afar. However, heat conduction through a matrix of irregular particles is a complicated physical system that is strongly influenced by temperature and atmospheric gas pressure. A series of new regolith thermal conductivity experiments were conducted under realistic planetary surface pressure and temperature conditions. A new model is put forth to describe the radiative, solid, and gaseous conduction terms of regolith on Earth, Mars, and airless bodies. These results will be used to infer particle size distribution from temperature measurements of the primitive asteroid Bennu to aid in OSIRIS-REx sampling site selection. Moving up in scale, fluvial processes are extremely influential in shaping Earth's surface and likely played an influential role on ancient Mars. Amphitheater-headed canyons are found on both planets, but conditions necessary for their development have been debated for many years. A spatial analysis of canyon form distribution with respect to local stratigraphy at the Escalante River and on Tarantula Mesa, Utah, indicates that canyon distribution is most closely related to variations in local rock strata, rather than groundwater spring intensity or climate variations. This implies that amphitheater-headed canyons are not simple markers of groundwater seepage erosion or megaflooding. Finally, at the largest scale, volcanism has significantly altered the surface characteristics of Earth and Mars. A field campaign was conducted in Hawaii to investigate the December 1974 Kilauea lava flow, where it was found that lava coils formed in an analogous manner to those found in Athabasca Valles, Mars. The location and size of the coils may be used as indicators of local effusion rate, viscosity, and crustal thickness.
ContributorsRyan, Andrew J (Author) / Christensen, Philip R. (Thesis advisor) / Bell, James F. (Committee member) / Whipple, Kelin X (Committee member) / Ruff, Steven W (Committee member) / Asphaug, Erik I (Committee member) / Arizona State University (Publisher)
Created2018
157373-Thumbnail Image.png
Description
The seasonal deposition of CO2 on the polar caps is one of the most dynamic processes on Mars and is a dominant driver of the global climate. Remote sensing temperature and albedo data were used to estimate the subliming mass of CO2 ice on south polar gullies near Sisyphi Cavi.

The seasonal deposition of CO2 on the polar caps is one of the most dynamic processes on Mars and is a dominant driver of the global climate. Remote sensing temperature and albedo data were used to estimate the subliming mass of CO2 ice on south polar gullies near Sisyphi Cavi. Results showed that column mass abundances range from 400 - 1000 kg.m2 in an area less than 60 km2 in late winter. Complete sublimation of the seasonal caps may occur later than estimated by large-scale studies and is geographically dependent. Seasonal ice depth estimates suggested variations of up to 1.5 m in depth or 75% in porosity at any one time. Interannual variations in these data appeared to correlate with dust activity in the southern hemisphere. Correlation coefficients were used to investigate the relationship between frost-free surface properties and the evolution of the seasonal ice in this region. Ice on high thermal inertia units was found to disappear before any other ice, likely caused by inhibited deposition during fall. Seasonal ice springtime albedo appeared to be predominantly controlled by orientation, with north-facing slopes undergoing brightening initially in spring, then subliming before south-facing slopes. Overall, the state of seasonal ice is far more complex than globally and regionally averaged studies can identify.

The discovery of cryovolcanic features on Charon and the presence of ammonia hydrates on the surfaces of other medium-sized Kuiper Belt Objects suggests that cryovolcanism may be important to their evolution. A two-dimensional, center-point finite difference, thermal hydraulic model was developed to explore the behavior of cryovolcanic conduits on midsized KBOs. Conduits on a Charon-surrogate were shown to maintain flow through over 200 km of crust and mantle down to radii of R = 0.20 m. Radii higher than this became turbulent due to high viscous dissipation and low thermal conductivity. This model was adapted to explore the emplacement of Kubrik Mons. Steady state flow was achieved with a conduit of radius R = 0.02 m for a source chamber at 2.3 km depth. Effusion rates computed from this estimated a 122 - 163 Myr upper limit formation timescale.
ContributorsMount, Christopher (Author) / Christensen, Philip R. (Thesis advisor) / Desch, Steven J (Committee member) / Bell, James F. (Committee member) / Clarke, Amanda B (Committee member) / Whipple, Kelin X (Committee member) / Arizona State University (Publisher)
Created2019
156510-Thumbnail Image.png
Description
Interpreting the petrogenesis of materials exposed on the surface of planets and asteroids is fundamental to understanding the origins and evolution of the inner Solar System. Temperature, pressure, fO2, and bulk composition directly influence the petrogenetic history of planetary surfaces and constraining these variables with remote sensing techniques is challenging.

Interpreting the petrogenesis of materials exposed on the surface of planets and asteroids is fundamental to understanding the origins and evolution of the inner Solar System. Temperature, pressure, fO2, and bulk composition directly influence the petrogenetic history of planetary surfaces and constraining these variables with remote sensing techniques is challenging. The integration of remote sensing data with analytical investigations of natural samples, lab-based spectroscopy, and thermodynamic modelling improves our ability to interpret the petrogenesis of planetary materials.

A suite of naturally heated carbonaceous chondrite material was studied with lab-based spectroscopic techniques, including visible near-infrared and Fourier transform infrared reflectance spectroscopy. Distinct mineralogic, and thus spectroscopic, trends are observed with increasing degree of thermal metamorphism. Characterization of these spectral trends yields a set of mappable parameters that will be applied to remotely sensed data from the OSIRIS-REx science payload. Information about the thermal history of the surface of the asteroid Bennu will aid in the selection of a sampling site, ensuring OSIRIS-REx collects a pristine regolith sample that has not experienced devolatilization of primitive organics or dehydration of phyllosilicates.

The evolution of mafic magma results in distinct major element chemical trends. Mineral assemblages present in evolved volcanic rocks are indicators of these processes. Using laboratory spectroscopic analyses of a suite of evolved volcanic rocks from the Snake River Plain, Idaho, I show that these evolutionary trends are reflected in the spectral signatures of ferromagenesian and feldspar minerals.

The Athena science package on the Mars Exploration Rover Spirit allows for the in situ investigation of bulk chemistry, texture, and mineralogy on the surface of Mars. Using the bulk composition of the Irvine and Backstay volcanic rocks, thermodynamic modeling was performed to further constrain the formation conditions of Martian volcanics. Irvine and Backstay compositions exhibit dramatic variations in modal mineralogy with changing fO2. Using these results, I show that the observed Mini-TES spectra of Irvine and Backstay can be adequately reproduced, and additional constraints can be placed on their primary fO2.
ContributorsHaberle, Christopher William (Author) / Christensen, Philip R. (Thesis advisor) / Garvie, Laurence A. J. (Committee member) / Bell, James F. (Committee member) / Ruff, Steven W. (Committee member) / Hervig, Richard L. (Committee member) / Arizona State University (Publisher)
Created2018
156923-Thumbnail Image.png
Description
Previous workers hypothesized that lunar Localized Pyroclastic Deposits (LPDs) represent products of vulcanian-style eruptions, since some have low proportions of juvenile material. The objective of the first study is to determine how juvenile composition, calculated using deposit and vent volumes, varies among LPDs. I used Lunar Reconnaissance Orbiter Camera Narrow

Previous workers hypothesized that lunar Localized Pyroclastic Deposits (LPDs) represent products of vulcanian-style eruptions, since some have low proportions of juvenile material. The objective of the first study is to determine how juvenile composition, calculated using deposit and vent volumes, varies among LPDs. I used Lunar Reconnaissance Orbiter Camera Narrow Angle Camera (LROC NAC) digital terrain models (DTMs) to generate models of pre-eruption surfaces for 23 LPDs and subtracted them from the NAC DTMs to calculate deposit and vent volumes. Results show that LPDs have a wide range of juvenile compositions and thinning profiles, and that there is a positive relationship between juvenile material proportion and deposit size. These findings indicate there is greater diversity among LPDs than previously understood, and that a simple vulcanian eruption model may only apply to the smallest deposits.

There is consensus that martian outflow channels were formed by catastrophic flooding events, yet many of these channels exhibit lava flow features issuing from the same source as the eroded channels, leading some authors to suggest that lava may have served as their sole agent of erosion. This debate is addressed in two studies that use Context Camera images for photogeologic analysis, geomorphic mapping, and cratering statistics: (1) A study of Mangala Valles showing that it underwent at least two episodes of fluvial activity and at least three episodes of volcanic activity during the Late Amazonian, consistent with alternating episodes of flooding and volcanism. (2) A study of Maja Valles finds that it is thinly draped in lava flows sourced from Lunae Planum to the west, rendering it analogous to the lava-coated Elysium outflow systems. However, the source of eroded channels in Maja Valles is not the source of the its lava flows, which instead issue from south Lunae Planum. The failure of these lava flows to generate any major channels along their path suggests that the channels of Maja Valles are not lava-eroded.

Finally, I describe a method of locating sharp edges in out-of-focus images for application to automated trajectory control systems that use images from fixed-focus cameras to determine proximity to a target.
ContributorsKeske, Amber (Author) / Christensen, Philip R. (Thesis advisor) / Robinson, Mark S (Committee member) / Clarke, Amanda B (Committee member) / Whipple, Kelin X (Committee member) / Bell, James F. (Committee member) / Arizona State University (Publisher)
Created2018
156980-Thumbnail Image.png
Description
The composition of planets and their volatile contents are intimately connected to the structure and evolution of their parent protoplanetary disks. The transport of momentum and volatiles is often parameterized by a turbulent viscosity parameter $\alpha$, which is usually assumed to be spatially and temporally uniform across the disk. I

The composition of planets and their volatile contents are intimately connected to the structure and evolution of their parent protoplanetary disks. The transport of momentum and volatiles is often parameterized by a turbulent viscosity parameter $\alpha$, which is usually assumed to be spatially and temporally uniform across the disk. I show that variable $\alpha$(r,z) (where $r$ is radius, and $z$ is height from the midplane) attributable to angular momentum transport due to MRI can yield disks with significantly different structure, as mass piles up in the 1-10 AU region resulting in steep slopes of p $>$ 2 here (where p is the power law exponent in $\Sigma \propto r^{-p}$). I also show that the transition radius (where bulk mass flow switches from inward to outward) can move as close in as 3 AU; this effect (especially prominent in externally photoevaporated disks) may significantly influence the radial water content available during planet formation.

I then investigate the transport of water in disks with different variable α profiles. While radial temperature profile sets the location of the water snowline (i.e., inside of which water is present as vapor; outside of which, as ice on solids), it is the rates of diffusion and drift of small icy solids and diffusion of vapor across the snow line that determine the radial water distribution. All of these processes are highly sensitive to local $\alpha$. I calculate the effect of radially varying α on water transport, by tracking the abundance of vapor in the inner disk, and fraction of ice in particles and larger asteroids beyond the snow line. I find one α profile attributable to winds and hydrodynamical instabilities, and motivated by meteoritic constraints, to show considerable agreement with inferred water contents observed in solar system asteroids.

Finally, I calculate the timing of gap formation due to the formation of a planet in disks around different stars. Here, I assume that pebble accretion is the dominant mechanism for planetary growth and that the core of the first protoplanet forms at the water snow line. I discuss the dependence of gap timing to various stellar and disk properties.
ContributorsKalyaan, Anusha (Author) / Desch, Steven J (Thesis advisor) / Groppi, Christopher (Committee member) / Young, Patrick (Committee member) / Shkolnik, Evgenya (Committee member) / Bell, James (Committee member) / Arizona State University (Publisher)
Created2018
154934-Thumbnail Image.png
Description
On Mars, sedimentary deposits reveal a complex history of water- and wind-related geologic processes. Central mounds – kilometer-scale stacks of sediment located within craters – occur across Mars, but the specific processes responsible for mound formation and subsequent modification are still uncertain. A survey of central mounds within large craters

On Mars, sedimentary deposits reveal a complex history of water- and wind-related geologic processes. Central mounds – kilometer-scale stacks of sediment located within craters – occur across Mars, but the specific processes responsible for mound formation and subsequent modification are still uncertain. A survey of central mounds within large craters was conducted. Mound locations, mound offsets within their host craters, and relative mound heights were used to address various mound formation hypotheses. The results suggest that mound sediments once filled their host craters and were later eroded into the features observed today. Mounds offsets from the center of their host crater imply that wind caused the erosion of central mounds. An in depth study of a single central mound (Mt. Sharp within Gale crater) was also conducted. Thermal Emission Imaging System Visible Imaging Subsystem (THEMIS-VIS) mosaics in grayscale and false color were used to characterize the morphology and color variations in and around Gale crater. One result of this study is that dunes within Gale crater vary in false color composites from blue to purple, and that these color differences may be due to changes in dust cover, grain size, and/or composition. To further investigate dune fields on Mars, albedo variations at eight dune fields were studied based on the hypothesis that a dune’s ripple migration rate is correlated to its albedo. This study concluded that a dune’s minimum albedo does not have a simple correlation with its ripple migration rate. Instead, dust devils remove dust on slow-moving and immobile dunes, whereas saltating sand caused by strong winds removes dust on faster-moving dunes.

On the Moon, explosive volcanic deposits within Oppenheimer crater that were emplaced ballistically were investigated. Lunar Reconnaissance Orbiter (LRO) Diviner Radiometer mid-infrared data, LRO Camera images, and Chandrayaan-1 orbiter Moon Mineralogy Mapper near-infrared spectra were used to test the hypothesis that the pyroclastic deposits in Oppenheimer crater were emplaced via Vulcanian activity by constraining their composition and mineralogy. The mineralogy and iron-content of the pyroclastic deposits vary significantly (including examples of potentially very high iron compositions), which indicates variability in eruption style. These results suggest that localized lunar pyroclastic deposits may have a more complex origin and mode of emplacement than previously thought.
ContributorsBennett, Kristen Alicia (Author) / Bell, James F. (Thesis advisor) / Christensen, Phillip (Committee member) / Clarke, Amanda (Committee member) / Robinson, Mark (Committee member) / Whipple, Kelin (Committee member) / Arizona State University (Publisher)
Created2016
155860-Thumbnail Image.png
Description
Impact cratering has played a key role in the evolution of the solid surfaces of Solar System bodies. While much of Earth’s impact record has been erased, its Moon preserves an extensive history of bombardment. Quantifying the timing of lunar impact events is crucial to understanding how impacts have shaped

Impact cratering has played a key role in the evolution of the solid surfaces of Solar System bodies. While much of Earth’s impact record has been erased, its Moon preserves an extensive history of bombardment. Quantifying the timing of lunar impact events is crucial to understanding how impacts have shaped the evolution of early Earth, and provides the basis for estimating the ages of other cratered surfaces in the Solar System.

Many lunar impact melt rocks are complex mixtures of glassy and crystalline “melt” materials and inherited clasts of pre-impact minerals and rocks. If analyzed in bulk, these samples can yield complicated incremental release 40Ar/39Ar spectra, making it challenging to uniquely interpret impact ages. Here, I have used a combination of high-spatial resolution 40Ar/39Ar geochronology and thermal-kinetic modeling to gain new insights into the impact histories recorded by such lunar samples.

To compare my data to those of previous studies, I developed a software tool to account for differences in the decay, isotopic, and monitor age parameters used for different published 40Ar/39Ar datasets. Using an ultraviolet laser ablation microprobe (UVLAMP) system I selectively dated melt and clast components of impact melt rocks collected during the Apollo 16 and 17 missions. UVLAMP 40Ar/39Ar data for samples 77135, 60315, 61015, and 63355 show evidence of open-system behavior, and provide new insights into how to interpret some complexities of published incremental heating 40Ar/39Ar spectra. Samples 77115, 63525, 63549, and 65015 have relatively simple thermal histories, and UVLAMP 40Ar/39Ar data for the melt components of these rocks indicate the timing of impact events—spanning hundreds of millions of years—that influenced the Apollo 16 and 17 sites. My modeling and UVLAMP 40Ar/39Ar data for sample 73217 indicate that some impact melt rocks can quantitatively retain evidence for multiple melt-producing impact events, and imply that such polygenetic rocks should be regarded as high-value sampling opportunities during future exploration missions to cratered planetary surfaces. Collectively, my results complement previous incremental heating 40Ar/39Ar studies, and support interpretations that the Moon experienced a prolonged period of heavy bombardment early in its history.
ContributorsMercer, Cameron Mark (Author) / Hodges, Kip V (Thesis advisor) / Robinson, Mark S (Committee member) / Wadhwa, Meenakshi (Committee member) / Desch, Steven J (Committee member) / Hervig, Richard L (Committee member) / Arizona State University (Publisher)
Created2017