Matching Items (4)
Filtering by

Clear all filters

157426-Thumbnail Image.png
Description
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the 10th leading cause of death, worldwide. The prevalence of drug-resistant clinical isolates and the paucity of newly-approved antituberculosis drugs impedes the successful eradication of Mtb. Bacteria commonly use two-component systems (TCS) to sense their environment and genetically modulate adaptive responses.

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis, is the 10th leading cause of death, worldwide. The prevalence of drug-resistant clinical isolates and the paucity of newly-approved antituberculosis drugs impedes the successful eradication of Mtb. Bacteria commonly use two-component systems (TCS) to sense their environment and genetically modulate adaptive responses. The prrAB TCS is essential in Mtb, thus representing an auspicious drug target; however, the inability to generate an Mtb ΔprrAB mutant complicates investigating how this TCS contributes to pathogenesis. Mycobacterium smegmatis, a commonly used M. tuberculosis genetic surrogate was used here. This work shows that prrAB is not essential in M. smegmatis. During ammonium stress, the ΔprrAB mutant excessively accumulates triacylglycerol lipids, a phenotype associated with M. tuberculosis dormancy and chronic infection. Additionally, triacylglycerol biosynthetic genes were induced in the ΔprrAB mutant relative to the wild-type and complementation strains during ammonium stress. Next, RNA-seq was used to define the M. smegmatis PrrAB regulon. PrrAB regulates genes participating in respiration, metabolism, redox balance, and oxidative phosphorylation. The M. smegmatis ΔprrAB mutant is compromised for growth under hypoxia, is hypersensitive to cyanide, and fails to induce high-affinity respiratory genes during hypoxia. Furthermore, PrrAB positively regulates the hypoxia-responsive dosR TCS response regulator, potentially explaining the hypoxia-mediated growth defects in the ΔprrAB mutant. Despite inducing genes encoding the F1F0 ATP synthase, the ΔprrAB mutant accumulates significantly less ATP during aerobic, exponential growth compared to the wild-type and complementation strains. Finally, the M. smegmatis ΔprrAB mutant exhibited growth impairment in media containing gluconeogenic carbon sources. M. tuberculosis mutants unable to utilize these substrates fail to establish chronic infection, suggesting that PrrAB may regulate Mtb central carbon metabolism in response to chronic infection. In conclusion, 1) prrAB is not universally essential in mycobacteria; 2) M. smegmatis PrrAB regulates genetic responsiveness to nutrient and oxygen stress; and 3) PrrAB may provide feed-forward control of the DosRS TCS and dormancy phenotypes. The data generated in these studies provide insight into the mycobacterial PrrAB TCS transcriptional regulon, PrrAB essentiality in Mtb, and how PrrAB may mediate stresses encountered by Mtb during the transition to chronic infection.
ContributorsMaarsingh, Jason (Author) / Haydel, Shelley E (Thesis advisor) / Roland, Kenneth (Committee member) / Sandrin, Todd (Committee member) / Bean, Heather (Committee member) / Arizona State University (Publisher)
Created2019
171573-Thumbnail Image.png
Description
Mycobacterial infections, as represented by leprosy and tuberculosis, have persisted as human pathogens for millennia. Their environmental counterparts, nontuberculous mycobacteria (NTM), are commodious infectious agents endowed with extensive innate and acquired antimicrobial resistance. The current drug development process selects for antibiotics with high specificity for definitive targets within bacterial metabolic

Mycobacterial infections, as represented by leprosy and tuberculosis, have persisted as human pathogens for millennia. Their environmental counterparts, nontuberculous mycobacteria (NTM), are commodious infectious agents endowed with extensive innate and acquired antimicrobial resistance. The current drug development process selects for antibiotics with high specificity for definitive targets within bacterial metabolic and replication pathways. Because these compounds demonstrate limited efficacy against mycobacteria, novel antimycobacterial agents with unconventional mechanisms of action were identified. Two highly resistant NTMs, Mycobacterium abscessus (Mabs) a rapid-growing respiratory, skin, and soft tissue pathogen, and Mycobacterium ulcerans (MU), the causative agent of Buruli ulcer, were selected as targets. Compounds that indicated antimicrobial activity against other highly resistant pathogens were selected for initial screening. Antimicrobial peptides (AMPs) have demonstrated activity against a variety of bacterial pathogens, including mycobacterial species. Designed antimicrobial peptides (dAMPs), rationally-designed and synthetic contingents, combine iterative features of natural AMPs to achieve superior antimicrobial activity in resistant pathogens. Initial screening identified two dAMPs, RP554 and RP557, with bactericidal activity against Mabs. Clay-associated ions have previously demonstrated bactericidal activity against MU. Synthetic and customizable aluminosilicates have also demonstrated adsorption of bacterial cells and toxins. On this basis, two aluminosilicate materials, geopolymers (GP) and ion-exchange nanozeolites (IE-nZeos), were screened for antimicrobial activity against MU and its fast-growing relative, Mycobacterium marinum (Mmar). GPs demonstrated adsorption of MU cells and mycolactone, a secreted, lipophilic toxin, whereas Cu-nZeos and Ag-nZeos demonstrated antibacterial activity against MU and Mmar. Cumulatively, these results indicate that an integrative drug selection process may yield a new generation of antimycobacterial agents.
ContributorsDermody, Roslyn June (Author) / Haydel, Shelley E (Thesis advisor) / Bean, Heather (Committee member) / Nickerson, Cheryl (Committee member) / Stephanopoulos, Nicholas (Committee member) / Arizona State University (Publisher)
Created2022
190821-Thumbnail Image.png
Description
Mycobacterium tuberculosis (Mtb), the etiological agent of the tuberculosis disease, is estimated to infect one-fourth of the human population and is responsible for 1.5 million deaths annually. The increased emergence of bacterial resistance to clinical interventions highlights the lack in development of novel antimicrobial therapeutics. Prototypical bacterial two-component systems (TCS)

Mycobacterium tuberculosis (Mtb), the etiological agent of the tuberculosis disease, is estimated to infect one-fourth of the human population and is responsible for 1.5 million deaths annually. The increased emergence of bacterial resistance to clinical interventions highlights the lack in development of novel antimicrobial therapeutics. Prototypical bacterial two-component systems (TCS) allow for sensing of extracellular stimuli and relay thereof to create a transcriptional response. The prrAB TCS is essential for viability in Mtb, presenting itself as an attractive novel drug target. In Mtb, PrrAB is involved in the adaptation to the intra-macrophage environment and recent work implicates PrrAB in the dosR-dependent hypoxia adaptation. This work defines a direct molecular and regulatory connection between Mtb PrrAB and the dosR-dependent hypoxia response. Using electrophoretic mobility shift assays combined with surface plasmon resonance, the Mtb dosR gene is established as a specific target of PrrA, corroborated by fluorescence reporter assays demonstrating a regulatory relationship. Considering the scarce understanding of prrAB essentiality in nontuberculous mycobacteria and the presence of multiple prrAB orthologs in Mycobacterium smegmatis and Mycobacterium abscessus, CRISPR interference was utilized to evaluate the essentiality of PrrAB beyond Mtb. prrAB was found to be inessential for viability in M. smegmatis yet required for in vitro growth. Conversely, M. abscessus prrAB repression led to enhanced in vitro growth. Diarylthiazole-48 (DAT-48) displayed decreased selectivity against M. abscessus but demonstrated enhanced intrinsic activity upon prrAB repression in M. abscessus. Lastly, to aid in the rapid determination of mycobacterial drug susceptibility and the detection of mycobacterial heteroresistance, the large volume scattering imaging (LVSim) platform was adapted for mycobacteria. Using LVSim, Mtb drug susceptibility was detected phenotypically within 6 hours, and clinically relevant mycobacterial heteroresistance was detected phenotypically within 10 generations. The data generated in these studies provide insight into the essential role of PrrAB in Mtb and its involvement in the dosR-dependent hypoxia adaptation, advance the understanding of mycobacterial PrrAB essentiality and PrrAB-associated mycobacterial growth dependency. These studies further establish molecular and mechanistic connection between PrrAB and DAT-48 in Mtb and M. abscessus and develop a rapid phenotypic drug susceptibility testing platform for mycobacteria.
ContributorsHaller, Yannik Alex (Author) / Haydel, Shelley E (Thesis advisor) / Bean, Heather (Committee member) / Nickerson, Cheryl (Committee member) / Plaisier, Christopher (Committee member) / Acharya, Abhinav (Committee member) / Arizona State University (Publisher)
Created2023
161867-Thumbnail Image.png
Description
Biocrusts are microbial communities that inhabit arid soil surfaces, providing essential services to dryland ecosystems. A paradoxical filamentous cyanobacterium, Microcoleus vaginatus, resides within the biocrust. While is often pioneers the colonization of bare, nutrient-poor desert soils worldwide, it cannot fix dinitrogen. In nature, M. vaginatus coexists with a unique microbial

Biocrusts are microbial communities that inhabit arid soil surfaces, providing essential services to dryland ecosystems. A paradoxical filamentous cyanobacterium, Microcoleus vaginatus, resides within the biocrust. While is often pioneers the colonization of bare, nutrient-poor desert soils worldwide, it cannot fix dinitrogen. In nature, M. vaginatus coexists with a unique microbial community, a “cyanosphere”, that is characterized by a high abundance of diazotrophic heterotrophs. This suggests mutualistic relationships wherein nutrients are traded between phototrophs and heterotrophs. To explore these relationships, I performed targeted, pedigreed isolation of cyanosphere members and used co-cultivation to recreate the mutualism in culture. Results showed that, in the absence of fixed nitrogen, M. vaginatus grew well when co-cultured with cyanosphere diazotrophs, but only poorly or not at all when alone or with non-cyanosphere diazotrophs. In agreement with this, the experimental provision of nitrogen to natural populations resulted in a loss of diazotrophs from the cyanosphere compared to controls, but the addition of phosphorus did not. Additionally, the convergence of M. vaginatus trichomes into large bundles held by a common sheath was elicited in culture by the addition of cyanosphere diazotrophs, pointing to a role of cyanobacterial motility responses in the development of mutualistic interactions. I then demonstrated that the tendency of M. vaginatus to stay within bundles and close to the sheath-dwelling cyanosphere was dependent on the cyanosphere population size. This effect was likely mediated by glutamate that acted as a signaling molecule rather than as a N source and impacted the gliding speed and negative chemophobic responses on the cyanobacterium. Glutamate seems to be used as a cue to spatially optimize cyanobacterium-cyanosphere mutualistic exchanges. My findings have potential practical applications in restoration ecology, which I further pursued experimentally. Co-inoculation of soil with cyanosphere diazotrophs resulted in swifter development of biocrusts over inoculation with the cyanobacterium only. Further, their addition to disturbed native soils containing traces of cyanobacteria sufficed for the formation of cohesive biocrusts without cyanobacterial inoculation. The inclusion of such “biocrust probiotics” in biocrust restoration is recommended. Overall, this body of work elucidates the hitherto unknown role of beneficial heterotrophic bacteria in the initial formation and development of biocrusts.
ContributorsNelson, Corey (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Penton, C. Ryan (Committee member) / Gile, Gillian (Committee member) / Bean, Heather (Committee member) / Arizona State University (Publisher)
Created2021