Matching Items (64)
Filtering by

Clear all filters

152149-Thumbnail Image.png
Description
Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating

Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating range. In this document a linear model is derived for an inverter connected to the Thevenin equivalent of a microgrid. This model is then compared to a nonlinear simulation model and analyzed using the open and closed loop systems in both the time and frequency domains. The modeling error is quantified with emphasis on its use for controller design purposes. Control design examples are given using a Glover McFarlane controller, gain sched- uled Glover McFarlane controller, and bumpless transfer controller which are compared to the standard droop control approach. These examples serve as a guide to illustrate the use of multi-variable modeling techniques in the context of robust controller design and show that gain scheduled MIMO control techniques can extend the operating range of a microgrid. A hardware implementation is used to compare constant gain droop controllers with Glover McFarlane controllers and shows a clear advantage of the Glover McFarlane approach.
ContributorsSteenis, Joel (Author) / Ayyanar, Raja (Thesis advisor) / Mittelmann, Hans (Committee member) / Tsakalis, Konstantinos (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2013
151561-Thumbnail Image.png
Description
This dissertation presents a new hybrid fault current limiter (FCL) topology that is primarily intended to protect single-phase power equipment. It can however be extended to protect three phase systems but would need three devices to protect each individual phase. In comparison against the existing fault current limiter technology, the

This dissertation presents a new hybrid fault current limiter (FCL) topology that is primarily intended to protect single-phase power equipment. It can however be extended to protect three phase systems but would need three devices to protect each individual phase. In comparison against the existing fault current limiter technology, the salient fea-tures of the proposed topology are: a) provides variable impedance that provides a 50% reduction in prospective fault current; b) near instantaneous response time which is with-in the first half cycle (1-4 ms); c) the use of semiconductor switches as the commutating switch which produces reduced leakage current, reduced losses, improved reliability, and a faster switch time (ns-µs); d) zero losses in steady-state operation; e) use of a Neodym-ium (NdFeB) permanent magnet as the limiting impedance which reduces size, cost, weight, eliminates DC biasing and cooling costs; f) use of Pulse Width Modulation (PWM) to control the magnitude of the fault current to a user's desired level. g) experi-mental test system is developed and tested to prove the concepts of the proposed FCL. This dissertation presents the proposed topology and its working principle backed up with numerical verifications, simulation results, and hardware implementation results. Conclu-sions and future work are also presented.
ContributorsPrigmore, Jay (Author) / Karady, George G. (Thesis advisor) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2013
152566-Thumbnail Image.png
Description
This study investigates how university instructors from various disciplines at a large, comprehensive university in the United States evaluate different varieties of English from countries considered "outer circle" (OC) countries, formerly colonized countries where English has been transplanted and is now used unofficially and officially to varying degrees. The study

This study investigates how university instructors from various disciplines at a large, comprehensive university in the United States evaluate different varieties of English from countries considered "outer circle" (OC) countries, formerly colonized countries where English has been transplanted and is now used unofficially and officially to varying degrees. The study was designed to address two gaps in the research: (1) how instructors in increasingly internationalized U.S. universities evaluate different written varieties of English, since many international students may be writing in an L1 other than American English, and (2) how instructors' first language and/or disciplinary backgrounds appear to affect their evaluations. Through a comparison of rankings and qualitative analysis of interview data, the study examines whether the participating instructors value the same features and characteristics in writing, such as text and organization features, found in American English and varieties of OC written English. In addition, it examines whether one's first or native language or one's disciplinary training affects the perception and evaluation of these particular varieties of English. This study showed that what is currently valued and expected by instructors from various disciplines in U.S. universities is what may be identified as an "American" style of writing; participants expected an organization providing a clear purpose up front, including paragraphs of a certain length, and containing sentences perceived as more direct and succinct. In addition, given the overall agreement on the element of good writing demonstrated in how composition and content area professors ranked the writing samples, my study suggests that what is being taught in composition is preparing student for the writing expected in content area classes. Last, my findings add to World Englishes (WE) research by adding a writing component to WE attitudinal research studies, which have previously focused on oral production. Almost equal numbers of Native and Non-Native English Speakers (NESs and NNESs) participated, and the NNESs appeared more tolerant of different varieties, unlike the preference for inner circle norms noted in previous studies. This study, therefore, has implications for writing research and instruction at U.S. colleges and universities, as well as informing the field of World Englishes.
ContributorsCollier, Lizabeth C (Author) / Matsuda, Aya (Thesis advisor) / Wiley, Terrence (Committee member) / Mccarty, Teresa (Committee member) / Friedrich, Patricia (Committee member) / Arizona State University (Publisher)
Created2014
152908-Thumbnail Image.png
Description
A new photovoltaic (PV) array power converter circuit is presented. The salient features of this inverter are: transformerless topology, grounded PV array, and only film capacitors. The motivations are to reduce cost, eliminate leakage ground currents, and improve reliability. The use of Silicon Carbide (SiC) transistors is the key enabling

A new photovoltaic (PV) array power converter circuit is presented. The salient features of this inverter are: transformerless topology, grounded PV array, and only film capacitors. The motivations are to reduce cost, eliminate leakage ground currents, and improve reliability. The use of Silicon Carbide (SiC) transistors is the key enabling technology for this particular circuit to attain good efficiency.

Traditionally, grid connected PV inverters required a transformer for isolation and safety. The disadvantage of high frequency transformer based inverters is complexity and cost. Transformerless inverters have become more popular recently, although they can be challenging to implement because of possible high frequency currents through the PV array's stay capacitance to earth ground. Conventional PV inverters also typically utilize electrolytic capacitors for bulk power buffering. However such capacitors can be prone to decreased reliability.

The solution proposed here to solve these problems is a bi directional buck boost converter combined with half bridge inverters. This configuration enables grounding of the array's negative terminal and passive power decoupling with only film capacitors.

Several aspects of the proposed converter are discussed. First a literature review is presented on the issues to be addressed. The proposed circuit is then presented and examined in detail. This includes theory of operation, component selection, and control systems. An efficiency analysis is also conducted. Simulation results are then presented that show correct functionality. A hardware prototype is built and experiment results also prove the concept. Finally some further developments are mentioned.

As a summary of the research a new topology and control technique were developed. The resultant circuit is a high performance transformerless PV inverter with upwards of 97% efficiency.
ContributorsBreazeale, Lloyd C (Author) / Ayyanar, Raja (Thesis advisor) / Karady, George G. (Committee member) / Tylavsky, Daniel (Committee member) / Tsakalis, Konstantinos (Committee member) / Arizona State University (Publisher)
Created2014
153326-Thumbnail Image.png
Description
An increase in the number of inverter-interfaced photovoltaic (PV) generators on existing distribution feeders affects the design, operation, and control of the distri- bution systems. Existing distribution system analysis tools are capable of supporting only snapshot and quasi-static analyses. Capturing the dynamic effects of the PV generators during the variation

An increase in the number of inverter-interfaced photovoltaic (PV) generators on existing distribution feeders affects the design, operation, and control of the distri- bution systems. Existing distribution system analysis tools are capable of supporting only snapshot and quasi-static analyses. Capturing the dynamic effects of the PV generators during the variation in the distribution system states is necessary when studying the effects of controller bandwidths, multiple voltage correction devices, and anti-islanding. This work explores the use of dynamic phasors and differential algebraic equations (DAE) for impact analysis of the PV generators on the existing distribution feeders.

The voltage unbalance induced by PV generators can aggravate the existing unbalance due to load mismatch. An increased phase unbalance significantly adds to the neutral currents, excessive neutral to ground voltages and violate the standards for unbalance factor. The objective of this study is to analyze and quantify the impacts of unbalanced PV installations on a distribution feeder. Additionally, a power electronic converter solution is proposed to mitigate the identified impacts and validate the solution's effectiveness through detailed simulations in OpenDSS.

The benefits associated with the use of energy storage systems for electric- utility-related applications are also studied. This research provides a generalized framework for strategic deployment of a lithium-ion based energy storage system to increase their benefits in a distribution feeder. A significant amount of work has been performed for a detailed characterization of the life cycle costs of an energy storage system. The objectives include - reduction of the substation transformer losses, reduction of the life cycle cost for an energy storage system, and accommodate the PV variability.

The distribution feeder laterals in the distribution feeder with relatively high PV generation as compared to the load can be operated as microgrids to achieve reliability, power quality and economic benefits. However, the renewable resources are intermittent and stochastic in nature. A novel approach for sizing and scheduling the energy storage system and microtrubine is proposed for reliable operation of microgrids. The size and schedule of the energy storage system and microturbine are determined using Benders' decomposition, considering the PV generation as a stochastic resource.
ContributorsNagarajan, Adarsh (Author) / Ayyanar, Raja (Thesis advisor) / Vittal, Vijay (Committee member) / Heydt, Gerald (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2015
153219-Thumbnail Image.png
Description
This dissertation delves into some EFL stakeholders' understanding of spiritual identities and power relations associated with these identities as performed in an undergraduate EFL teacher education program at a Christian university in Indonesia. This study is motivated by an ongoing debate over the place of spirituality, especially Christianity, in ELT.

This dissertation delves into some EFL stakeholders' understanding of spiritual identities and power relations associated with these identities as performed in an undergraduate EFL teacher education program at a Christian university in Indonesia. This study is motivated by an ongoing debate over the place of spirituality, especially Christianity, in ELT. In this project, religions are considered to be windows through which one's spirituality is viewed and expressed. Spiritually associated relations of power indicate discrepancies due to positioning of one person committed to a spiritual view in relation to those having similar or different spiritual views. The purpose of exploring spiritually associated identities and power relations is to provide empirical evidence which supports the following arguments. The integration of spirituality in ELT, or lack thereof, can be problematic. More importantly, however, spirituality can be enriching for some EFL teachers and students alike, and be presented together with critical ELT. To explore the complexity of power relations associated with some EFL stakeholders' spiritual identities, I analyzed data from classroom observations, four focus group discussions from February to April 2014, and individual interviews with 23 teachers and students from February to September 2014. Findings showed that Christian and non-Christian English teachers had nuanced views regarding the place of prayer in ELT-related activities, professionalism in ELT, and ways of negotiating spiritually associated power relations in ELT contexts. Students participating in this study performed their spiritual identities in ways that can be perceived as problematic (e.g., by being very dogmatic or evangelical) or self-reflexive. Classroom observations helped me to see more clearly how Christian English teachers interacted with their students from different religious backgrounds. In one class, a stimulating dialogue seemed to emerge when a teacher accommodated both critical and religious views to be discussed. This project culminates in my theorization of the praxis of critical spiritual pedagogy in ELT. Central to this praxis are (a) raising the awareness of productive power and power relations associated with spiritual identities; (b) learning how to use defiant discourses in negotiating spiritually associated power relations; and (c) nurturing self-reflexivity critically and spiritually.
ContributorsMambu, Joseph Ernest (Author) / Matsuda, Paul Kei (Thesis advisor) / Friedrich, Patricia (Committee member) / Prior, Matthew T. (Committee member) / Arizona State University (Publisher)
Created2014
153345-Thumbnail Image.png
Description
Traditional deterministic reserve requirements rely on ad-hoc, rule of thumb methods to determine adequate reserve in order to ensure a reliable unit commitment. Since congestion and uncertainties exist in the system, both the quantity and the location of reserves are essential to ensure system reliability and market efficiency. The modeling

Traditional deterministic reserve requirements rely on ad-hoc, rule of thumb methods to determine adequate reserve in order to ensure a reliable unit commitment. Since congestion and uncertainties exist in the system, both the quantity and the location of reserves are essential to ensure system reliability and market efficiency. The modeling of operating reserves in the existing deterministic reserve requirements acquire the operating reserves on a zonal basis and do not fully capture the impact of congestion. The purpose of a reserve zone is to ensure that operating reserves are spread across the network. Operating reserves are shared inside each reserve zone, but intra-zonal congestion may block the deliverability of operating reserves within a zone. Thus, improving reserve policies such as reserve zones may improve the location and deliverability of reserve.

As more non-dispatchable renewable resources are integrated into the grid, it will become increasingly difficult to predict the transfer capabilities and the network congestion. At the same time, renewable resources require operators to acquire more operating reserves. With existing deterministic reserve requirements unable to ensure optimal reserve locations, the importance of reserve location and reserve deliverability will increase. While stochastic programming can be used to determine reserve by explicitly modelling uncertainties, there are still scalability as well as pricing issues. Therefore, new methods to improve existing deterministic reserve requirements are desired.

One key barrier of improving existing deterministic reserve requirements is its potential market impacts. A metric, quality of service, is proposed in this thesis to evaluate the price signal and market impacts of proposed hourly reserve zones.

Three main goals of this thesis are: 1) to develop a theoretical and mathematical model to better locate reserve while maintaining the deterministic unit commitment and economic dispatch structure, especially with the consideration of renewables, 2) to develop a market settlement scheme of proposed dynamic reserve policies such that the market efficiency is improved, 3) to evaluate the market impacts and price signal of the proposed dynamic reserve policies.
ContributorsWang, Fengyu (Author) / Hedman, Kory W. (Thesis advisor) / Zhang, Muhong (Committee member) / Tylavsky, Daniel J. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2015
150298-Thumbnail Image.png
Description
Due to restructuring and open access to the transmission system, modern electric power systems are being operated closer to their operational limits. Additionally, the secure operational limits of modern power systems have become increasingly difficult to evaluate as the scale of the network and the number of transactions between utilities

Due to restructuring and open access to the transmission system, modern electric power systems are being operated closer to their operational limits. Additionally, the secure operational limits of modern power systems have become increasingly difficult to evaluate as the scale of the network and the number of transactions between utilities increase. To account for these challenges associated with the rapid expansion of electric power systems, dynamic equivalents have been widely applied for the purpose of reducing the computational effort of simulation-based transient security assessment. Dynamic equivalents are commonly developed using a coherency-based approach in which a retained area and an external area are first demarcated. Then the coherent generators in the external area are aggregated and replaced by equivalenced models, followed by network reduction and load aggregation. In this process, an improperly defined retained area can result in detrimental impacts on the effectiveness of the equivalents in preserving the dynamic characteristics of the original unreduced system. In this dissertation, a comprehensive approach has been proposed to determine an appropriate retained area boundary by including the critical generators in the external area that are tightly coupled with the initial retained area. Further-more, a systematic approach has also been investigated to efficiently predict the variation in generator slow coherency behavior when the system operating condition is subject to change. Based on this determination, the critical generators in the external area that are tightly coherent with the generators in the initial retained area are retained, resulting in a new retained area boundary. Finally, a novel hybrid dynamic equivalent, consisting of both a coherency-based equivalent and an artificial neural network (ANN)-based equivalent, has been proposed and analyzed. The ANN-based equivalent complements the coherency-based equivalent at all the retained area boundary buses, and it is designed to compensate for the discrepancy between the full system and the conventional coherency-based equivalent. The approaches developed have been validated on a large portion of the Western Electricity Coordinating Council (WECC) system and on a test case including a significant portion of the eastern interconnection.
ContributorsMa, Feng (Author) / Vittal, Vijay (Thesis advisor) / Tylavsky, Daniel (Committee member) / Heydt, Gerald (Committee member) / Si, Jennie (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
151050-Thumbnail Image.png
Description
In the deregulated power system, locational marginal prices are used in transmission engineering predominantly as near real-time pricing signals. This work extends this concept to distribution engineering so that a distribution class locational marginal price might be used for real-time pricing and control of advanced control systems in distribution circuits.

In the deregulated power system, locational marginal prices are used in transmission engineering predominantly as near real-time pricing signals. This work extends this concept to distribution engineering so that a distribution class locational marginal price might be used for real-time pricing and control of advanced control systems in distribution circuits. A formulation for the distribution locational marginal price signal is presented that is based on power flow sensitivities in a distribution system. A Jacobian-based sensitivity analysis has been developed for application in the distribution pricing method. Increasing deployment of distributed energy sources is being seen at the distribution level and this trend is expected to continue. To facilitate an optimal use of the distributed infrastructure, the control of the energy demand on a feeder node in the distribution system has been formulated as a multiobjective optimization problem and a solution algorithm has been developed. In multiobjective problems the Pareto optimality criterion is generally applied, and commonly used solution algorithms are decision-based and heuristic. In contrast, a mathematically-robust technique called normal boundary intersection has been modeled for use in this work, and the control variable is solved via separable programming. The Roy Billinton Test System (RBTS) has predominantly been used to demonstrate the application of the formulation in distribution system control. A parallel processing environment has been used to replicate the distributed nature of controls at many points in the distribution system. Interactions between the real-time prices in a distribution feeder and the nodal prices at the aggregated load bus have been investigated. The application of the formulations in an islanded operating condition has also been demonstrated. The DLMP formulation has been validated using the test bed systems and a practical framework for its application in distribution engineering has been presented. The multiobjective optimization yields excellent results and is found to be robust for finer time resolutions. The work shown in this report is applicable to, and has been researched under the aegis of the Future Renewable Electric Energy Delivery and Management (FREEDM) center, which is a generation III National Science Foundation engineering research center headquartered at North Carolina State University.
ContributorsRanganathan Sathyanarayana, Bharadwaj (Author) / Heydt, Gerald T (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2012
150597-Thumbnail Image.png
Description
This action research project explores masters level graduate student writing and academic identity during one semester in an interdisciplinary masters program. Informing this study is a two part theoretical framework including the Academic Literacy Model (Lea and Street) and Wenger's concept of identity. The purpose of this exploration was to

This action research project explores masters level graduate student writing and academic identity during one semester in an interdisciplinary masters program. Informing this study is a two part theoretical framework including the Academic Literacy Model (Lea and Street) and Wenger's concept of identity. The purpose of this exploration was to understand how first semester graduate students experienced academic writing and what characteristics of their academic identity emerged. A mixed-methods approach was used to collect both quantitative and qualitative data. Quantitative data included results from the Inventory of Processes in Graduate Writing (Lavelle and Bushrow, 2007) and the Graduate Student Identity Survey. Qualitative data was collected through researcher observations, student blog entries, writing group transcripts, and individual interviews. The following themes emerge from the data: a) graduate students attribute their successes in writing to previous experiences, b) graduate students experience struggles related primarily to academic quality and faculty expectations, c) graduate students negotiate ways of being in the academy through figuring out expectations of faculty and program, d) work done in the writing group meetings shows evidence of meaning-making for the graduate students, e) the focus of the MA program was critically important to graduate students in the graduate writing project, e) participants' role as graduate students felt most strongly in contexts that include academic activity, and f) students acknowledge change and increasingly identify themselves as writers. Ideas for future cycles of research are discussed.
ContributorsRuggles, Tosha M (Author) / Wetzel, Keith (Thesis advisor) / Ewbank, Ann (Committee member) / Friedrich, Patricia (Committee member) / Arizona State University (Publisher)
Created2012