Matching Items (13)
Filtering by

Clear all filters

172007-Thumbnail Image.png
Description
IOsteosarcoma is the most common bone cancer and typically affects patients in the second decade of life. Current treatment methods have not proven effective for treating reoccurring or metastatic osteosarcoma (mOS) given the 5-year survival rate of 15-30%. Previous work showed that using the immune system to fight the cancer

IOsteosarcoma is the most common bone cancer and typically affects patients in the second decade of life. Current treatment methods have not proven effective for treating reoccurring or metastatic osteosarcoma (mOS) given the 5-year survival rate of 15-30%. Previous work showed that using the immune system to fight the cancer significantly improved survival of mOS in mice, but approximately 40-50% of treated mice still succumbed to disease. To further improve immunotherapy, I analyzed immune cells in the tumor bed and observed high numbers of a rare T cell subtype: CD4hiCD8αhi, or double positive (DP), T cells. While previous literature found mature DP T cells in chronic diseases, the associations and functions of this rare T cell subtype varied between studies and were unknown for mOS. Controlling for age, chronicity of disease, and environmental exposure, I found DP T cells composed a higher percentage of T cells in the cancer as tumor burden increased. I then tested whether the DP cells were pro- or anti-tumor. I found that DP cells produced the cytokines IFNγ and IL-2 when exhaustion was overcome. They also expressed FasL for cytotoxic function, although the target is unknown. These findings suggest DP T cells have multifunctionality, which could be advantageous when responding to high antigen load. II Course-based undergraduate research experiences (CUREs) offer students opportunities to engage in critical thinking and problem solving. However, quantitating the impact that incorporating research into undergraduate courses has on student learning has been difficult since most CUREs lack a comparable traditional course as a control. Because the overall class structure remained unaltered when our upper division immunology course transitioned to a CURE class, we realized retrospectively that we were in a unique position to quantitate the impact of incorporating research on student performance. I then analyzed the summative assessments used to assess student learning and found that students in the CURE format class performed significantly better on quizzes, exams, and reports. There were no significant differences in academic levels, degree programs, or grade point averages, suggesting improved performance was due to increased engagement of students in research.
ContributorsAppel, Nicole (Author) / Blattman, Joseph (Thesis advisor) / Anderson, Karen (Committee member) / Lake, Douglas (Committee member) / Hingorani, Pooja (Committee member) / Arizona State University (Publisher)
Created2022
190721-Thumbnail Image.png
Description
Originally conceived as a way to scaffold molecules of interest into three-dimensional (3D) crystalline lattices for X ray crystallography, the field of deoxyribonucleic acid (DNA) nanotechnology has dramatically evolved since its inception. The unique properties of DNA nanostructures have promoted their use not only for X ray crystallography, but

Originally conceived as a way to scaffold molecules of interest into three-dimensional (3D) crystalline lattices for X ray crystallography, the field of deoxyribonucleic acid (DNA) nanotechnology has dramatically evolved since its inception. The unique properties of DNA nanostructures have promoted their use not only for X ray crystallography, but for a suite of biomedical applications as well. The work presented in this dissertation focuses on both of these exciting applications in the field: 1) Nucleic acid nanostructures as multifunctional drug and vaccine delivery platforms, and 2) 3D DNA crystals for structure elucidation of scaffolded guest molecules.Chapter 1 illustrates how a wide variety of DNA nanostructures have been developed for the delivery of drugs and vaccine components. However, their applications are limited under physiological conditions due to their lack of stability in low salt environments, susceptibility to enzymatic degradation, and tendency for endosomal entrapment. To address these issues, Chapter 2 describes a PEGylated peptide coating molecule was designed to electrostatically adhere to and protect DNA origami nanostructures and to facilitate their cytosolic delivery by peptide-mediated endosomal escape. The development of this molecule will aid in the use of nucleic acid nanostructures for biomedical purposes, such as the delivery of messenger ribonucleic acid (mRNA) vaccine constructs. To this end, Chapter 3 discusses the fabrication of a structured mRNA nanoparticle for more cost-efficient mRNA vaccine manufacture and proposes a multi-epitope mRNA nanostructure vaccine design for targeting human papillomavirus (HPV) type 16-induced head and neck cancers. DNA nanotechnology was originally envisioned to serve as three-dimensional scaffolds capable of positioning proteins in a rigid array for their structure elucidation by X ray crystallography. Accordingly, Chapter 4 explores design parameters, such as sequence and Holliday junction isomeric forms, for efficient crystallization of 3D DNA lattices. Furthermore, previously published DNA crystal motifs are used to site-specifically position and structurally evaluate minor groove binding molecules with defined occupancies. The results of this study provide significant advancement towards the ultimate goal of the field.
ContributorsHenry, Skylar J.W. (Author) / Stephanopoulos, Nicholas (Thesis advisor) / Anderson, Karen (Thesis advisor) / Blattman, Joseph (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2023
190893-Thumbnail Image.png
Description
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative pathogen of Coronavirus Disease 2019 (COVID-19). Successful vaccination aims to elicit neutralizing antibodies (NAbs) which inhibit viral infection. Traditional NAb quantification methods (neutralization assays) are labor-intensive and expensive, with limited practicality for routine use (e.g. monitoring vaccination response). Thus, a rapid

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative pathogen of Coronavirus Disease 2019 (COVID-19). Successful vaccination aims to elicit neutralizing antibodies (NAbs) which inhibit viral infection. Traditional NAb quantification methods (neutralization assays) are labor-intensive and expensive, with limited practicality for routine use (e.g. monitoring vaccination response). Thus, a rapid (10-minute) lateral flow assay (LFA) for quantification of SARS-CoV-2 NAbs was developed. Using the NAb LFA, an 18-month longitudinal study assessing monthly NAb titers was conducted in a cohort of over 500 COVID-19 mRNA vaccine recipients. Three NAb response groups were identified: vaccine strong responders (VSRs), moderate responders (VMRs), and poor responders (VPRs). VSRs generated high and durable NAb titers. VMRs initially generated high NAb titers but showed more rapid waning with time post-vaccination. Finally, VPRs rarely generated NAb titers ≥1:160, even after 3rd dose. Although strong humoral responses correlate with vaccine effectiveness, viral-specific CD4+ and CD8+ T cells are critical for long-term protection. Discordant phenotypes of viral-specific CD8+ and CD4+CXCR5+ T follicular helper (cTfh) cells have recently been associated with differential NAb responses. The second portion of this dissertation was to investigate whether/how SARS-CoV-2 T cell responses differ in individuals with impaired NAb titers following mRNA vaccination. Thus, phenotypic and functional characterization of T cell activation across NAb response groups was conducted. It was hypothesized that VPRs would exhibit discordant SARS-CoV-2 T cell activation and altered cTfh phenotypes. Peripheral blood mononuclear cells were isolated from VPRs, VMRs, VSRs, naturally infected, and normal donors. SARS-CoV-2 responsive T cells were characterized using in vitro activation induced marker assays, multicolor flow cytometry, and multiplex cytokine analysis. Further, CXCR5+ cTfh were examined for chemokine receptor expression (CCR6 and CXCR3). Results demonstrated that despite differential NAb responses, activation of SARS-CoV-2 responsive CD4+ and CD8+ T cells was comparable across NAb groups. However, double-positive CD4+CD8+, CD8low, and activated CD4+CXCR5+CCR6-CXCR3+ (Tfh1-like) T cells were expanded in VPRs compared to VMR and VSRs. Interestingly, a unique population of CD8+CXCR5+ T cells was also expanded in VPRs. These novel findings may aid in identification of individuals with impaired or altered immune responses to COVID-19 mRNA vaccination.
ContributorsRoeder, Alexa Jordan (Author) / Lake, Douglas (Thesis advisor) / McFadden, Grant (Committee member) / Borges Florsheim, Esther (Committee member) / Chang, Yung (Committee member) / Rahman, Masmudur (Committee member) / Arizona State University (Publisher)
Created2023
189343-Thumbnail Image.png
Description
The innate immune system serves as an immediate response to pathogenic infection and an informant to the adaptive immune system. The 2′,5′-oligoadenylate (2-5A) synthetase (OAS)–RNase-L system is a component of the innate immune system induced by interferons (IFNs) and serves to eliminate viral infections. In humans, three enzymatically active OAS

The innate immune system serves as an immediate response to pathogenic infection and an informant to the adaptive immune system. The 2′,5′-oligoadenylate (2-5A) synthetase (OAS)–RNase-L system is a component of the innate immune system induced by interferons (IFNs) and serves to eliminate viral infections. In humans, three enzymatically active OAS proteins exist, OAS1, OAS2, and OAS3. Recent evidence suggests variations in cellular localization of OAS proteins may influence the impact and influence of those proteins on viral replication. However, viral suppression mechanisms involving specific OAS proteins are still unclear for most viruses. Here, I overexpress different isoforms of OAS and determined that though viruses within the same family have similar replication strategies, the extent to which each OAS protein impacts viral replication for Flaviviruses, and Alphaviruses varies. In contrast to the innate immune system, the adaptive immune system provides specific and long-lived immune responses. In the context of cancer, T cells have been shown to play a prominent role in tumor regression. It has previously been demonstrated that administration α-CTLA-4/α-PD-L1 immune checkpoint blockade (ICB) to mice inoculated with a K7M2 metastatic osteosarcoma (mOS) cell line resulted in ~50% survival. Here, I sought to determine biological differences among murine responders and non-responders to ICB for mOS to understand better what factors could increase ICB efficacy. A prospective culprit is a variance in circulating antibodies (Abs). I have shown that sera from mice, before inoculation with mOS or ICB, display distinct differences in Ab repertoire between responders and non-responders, suggesting the presence or absence of particular Abs may influence the outcome of ICB. Recent studies have also shown that malleable environmental factors, such as differences in microbiome composition, can yield subsequent changes in circulating Abs. Strong associations have been made between host-microbiome interactions and their effects on health. Here, I study potential associations of microbiome-mediated impacts on ICB efficacy for mOS. Additionally, I sought to determine potential changes in T-cellular response to mOS due to modulations in microbiome composition and showed that ICB efficacy can change in conjunction with microbiome composition changes in a murine model.
ContributorsDi Palma, Michelle Pina (Author) / Blattman, Joseph N (Thesis advisor) / Li, Yize (Thesis advisor) / Anderson, Karen S (Committee member) / McFadden, Grant (Committee member) / Arizona State University (Publisher)
Created2023
Description
Lung metastatic cancers represent a major challenge in both basic and clinical cancer research. The ability to treat lung metastases to date has been challenging, current treatment paradigms are a mix of classic radiotherapy, chemotherapies and tumor-targeted therapies, with no one treatment that is effective for all tumors. Oncolytic viruses

Lung metastatic cancers represent a major challenge in both basic and clinical cancer research. The ability to treat lung metastases to date has been challenging, current treatment paradigms are a mix of classic radiotherapy, chemotherapies and tumor-targeted therapies, with no one treatment that is effective for all tumors. Oncolytic viruses (OVs) represent a new therapeutic modality for hard-to-treat tumors. However, major questions still exist in the field, especially around how to therapeutically arm and deliver OVs to sites of disseminated tumors. To address this need, oncolytic myxoma viruses (MYXV) that expresses TNF superfamily member transgenes (vMYX-hTNF or vMyx-mLIGHT) were tested in an immunocompetent syngeneic lung metastatic murine osteosarcoma model. Three versions of this model were used; 1-an early intervention model, 2-an established tumor model, defined by both average tumor burden and failure of anti-PD-L1 and vMyx-TNF monotherapies, and 3-a late-stage disease model, defined by the failure the combination of vMyx-hTNF/PBMCs and anti-PD-L1 therapy. These three models were designed to test different questions about therapeutic efficacy of armed MYXV and delivery of MYXV to lung metastases. In the early intervention model, vMyx-hTNF was found to be an effective therapy, especially when delivered by leukocyte carrier cells (either bone marrow or PBMCs). Next, the combination of immune checkpoint inhibitors, including anti-PD-L1, anti-PD-1 and anti-CTLA-4, with vMyx-TNF/PBMCs were found to increase efficacy in treated mice compared to monotherapies. The established model was used to test potential synergy of vMyx-hTNF with anti-PD-L1 therapy. This model was defined by the failure of the monotherapies, however, in combination, treated mice survived significantly longer, and had lower average tumor burden throughout. This model was also used to test tumor specific delivery using ex vivo loaded PBMCs as carrier cells. Using MYXV expressing Tdtomato, PBMCs were found to deliver MYXV to tumors more effectively than free virus. In the most stringent late-stage disease model, vMyx-mLIGHT/PBMCs and vMyx-mLIGHT/PBMCs plus anti-PD-1 were tested and found to be efficacious where combination vMyx-TNF/PBMCs plus PD-1 failed. These results taken together show that TNFSF arming of MYXV, especially when delivered by autologous PBMCs, represents a new potential treatment strategy for lung metastatic tumors.
ContributorsChristie, John Douglas (Author) / McFadden, Grant (Thesis advisor) / Blattman, Joseph (Committee member) / Jacobs, Bertram (Committee member) / Anderson, Karen (Committee member) / Arizona State University (Publisher)
Created2021
168628-Thumbnail Image.png
Description
Mucosal membranes represent a major site of pathogen transmission and cancer development. Enhancing T cell migration to mucosal surfaces could improve immune-based therapies for these diseases, yielding better clinical outcomes. All-trans-retinoic acid (ATRA) is a biologically active form of vitamin A that has been shown to increase T cell migration

Mucosal membranes represent a major site of pathogen transmission and cancer development. Enhancing T cell migration to mucosal surfaces could improve immune-based therapies for these diseases, yielding better clinical outcomes. All-trans-retinoic acid (ATRA) is a biologically active form of vitamin A that has been shown to increase T cell migration to mucosal sites, however its therapeutic use is limited by its toxicity potential and unstable nature. ATRA-related compounds with lower toxicity and higher stability were assessed for their ability to induce similar immune migration effects as ATRA, using in vitro and in vivo model systems. Chapter 2 summarizes the first project, in which synthetic, ATRA-like compounds called rexinoids were used to modulate T cell expression of mucosal homing proteins chemokine receptor 9 (CCR9) and integrin alpha 4 beta 7 (α4β7), and alter their physical migration in vitro. Several rexinoids independently mimicked the activity of ATRA to enhance protein expression and migration, while others worked synergistically with subtoxic doses of ATRA to produce similar results. Furthermore, rexinoid administration in vivo was well-tolerated by animal models, a finding not seen with ATRA. Chapter 3 focuses on the second project, where plasmids containing ATRA-synthesizing proteins were assessed for their in vivo ability to act as mucosal vaccine adjuvants and enhance T cell migration to mucosal sites during DNA vaccination. Though increased mucosal migration was seen with use of the adjuvant plasmids, these findings were not determined to be significant. Immune-mediated protection following viral challenge was also not determined to be significant in animal models receiving both vaccine and adjuvant plasmids. The data shows that several novel rexinoids may possess enhanced clinical utility compared to ATRA, lending support for their use in immunotherapeutic approaches towards mucosal maladies. While the potential mucosal vaccine adjuvants did not show great significance in enhancing T cell migration or viral protection, further optimization of the model system may produce better results. This work helps advance knowledge of immune cell trafficking to afflicted mucosal regions. It can be used as a basis for understanding migration to other body areas, as well as for the development of better immune-based treatments.
ContributorsManhas, Kavita Rani (Author) / Blattman, Joseph (Thesis advisor) / Marshall, Pamela (Committee member) / Lake, Douglas (Committee member) / Ugarova, Tatiana (Committee member) / Arizona State University (Publisher)
Created2022
187406-Thumbnail Image.png
Description
Life history theory offers a powerful framework to understand evolutionary selection pressures and explain how adaptive strategies use the life history trade-off and differences in cancer defenses across the tree of life. There is often some cost to the phenotype of therapeutic resistance and so sensitive cells can usually outcompete

Life history theory offers a powerful framework to understand evolutionary selection pressures and explain how adaptive strategies use the life history trade-off and differences in cancer defenses across the tree of life. There is often some cost to the phenotype of therapeutic resistance and so sensitive cells can usually outcompete resistant cells in the absence of therapy. Adaptive therapy, as an evolutionary and ecologically inspired paradigm in cancer treatment, uses the competitive interactions between drug-sensitive, and drug-resistant subclones to help suppress the drug-resistant subclones. However, there remain several open challenges in designing adaptive therapies, particularly in extending this approach to multiple drugs. Furthermore, the immune system also plays a role in preventing and controlling cancers. Life history theory may help to explain the variation in immune cell levels across the tree of life that likely contributes to variance in cancer prevalence across vertebrates. However, this has not been previously explored. This work 1) describes resistance management for cancer, lessons cancer researchers learned from farmers since adaptive evolutionary strategies were inspired by the management of resistance in agricultural pests, 2) demonstrates how adaptive therapy protocols work with gemcitabine and capecitabine in a hormone-refractory breast cancer mouse model, 3) tests for a relationship between life history strategy and the immune system, and tests for an effect of immune cells levels on cancer prevalence across vertebrates, and 4) provides a novel approach to improve the teaching of life history theory. This work applies lessons that cancer researchers learned from pest managers, who face similar issues of pesticide resistance, to control cancers. It represents the first time that multiple drugs have been used in adaptive therapy for cancer, and the first time that adaptive therapy has been used on hormone-refractory breast cancer. I found that this evolutionary approach to cancer treatment prolongs survival in mice and also selects for the slow life history strategy. I also discovered that species with slower life histories have higher concentrations of white blood cells and a higher percentage of heterophils, monocytes and segmented neutrophils. Moreover, larger platelet size is associated with higher cancer prevalence in mammals.
ContributorsSeyedi, Seyedehsareh (Author) / Maley, Carlo (Thesis advisor) / Blattman, Joseph (Committee member) / Anderson, Karen (Committee member) / Wilson, Melissa (Committee member) / Huijben, Silvie (Committee member) / Gatenby, Robert (Committee member) / Arizona State University (Publisher)
Created2023
193585-Thumbnail Image.png
Description
The human gut microbiome is associated with health outcomes including gastrointestinal and metabolic health, autoimmune disease and cancer. However, the role of the microbiome in many disease processes, including in the preterm gastrointestinal tract and female genital tract, has yet to be defined. Further, the diverse community of viruses within

The human gut microbiome is associated with health outcomes including gastrointestinal and metabolic health, autoimmune disease and cancer. However, the role of the microbiome in many disease processes, including in the preterm gastrointestinal tract and female genital tract, has yet to be defined. Further, the diverse community of viruses within the microbiome (the virome) is understudied compared to bacteria. Here, I examine the microbiome and virome in specific disease models that are poorly understood: necrotizing enterocolitis (NEC), discordant HIV shedding in women living with HIV (WHLIV), female genital tract inflammation and gammaherpesvirus infection. Specifically, I examined the gut virome longitudinally in a cohort of preterm infants at risk for NEC; the female genital tract (FGT) microbiome and virome longitudinally in a cohort of WLHIV from Lima, Peru; the FGT virome in women from Phoenix, Arizona with differing levels of genital inflammation and different microbiome compositions; and the gut microbiome in murine gammaherpesvirus 68 (MHV68) infection. Further, I contributed to research responding to the spread of SARS-CoV-2 in Arizona. I found that 1) gut virome beta diversity decreased before NEC onset in preterm infants, suggesting a role for the virome in NEC; 2) FGT microbiome instability was associated with discordant HIV shedding, while FGT virome composition changed in association with ART duration and immune recovery; 3) FGT virome composition was associated with inflammation and microbiome composition; and 4) MHV68 infection outcomes were independent of microbiome perturbation, which may reflect environmental influences. The results of this research advance understanding of the microbiome and virome in these specific disease processes, and support further investigation of the microbiome and virome in preterm infant gastrointestinal health and FGT health, as well as environmental effects in microbiome research.
ContributorsKaelin, Emily (Author) / Lim, Efrem (Thesis advisor) / Varsani, Arvind (Committee member) / Jacobs, Bertram (Committee member) / McFadden, Grant (Committee member) / Rahman, Masmudur (Committee member) / Arizona State University (Publisher)
Created2024
157036-Thumbnail Image.png
Description
Environmental changes are occurring at an unprecedented rate, and these changes will undoubtedly lead to alterations in resource availability for many organisms. To effectively predict the implications of such changes, it is critical to better understand how organisms have adapted to coping with seasonally limited resources. The vast majority of

Environmental changes are occurring at an unprecedented rate, and these changes will undoubtedly lead to alterations in resource availability for many organisms. To effectively predict the implications of such changes, it is critical to better understand how organisms have adapted to coping with seasonally limited resources. The vast majority of previous work has focused on energy balance as the driver of changes in organismal physiology. While energy is clearly a vital currency, other resources can also be limited and impact physiological functions. Water is essential for life as it is the main constituent of cells, tissues, and organs. Yet, water has received little consideration for its role as a currency that impacts physiological functions. Given the importance of water to most major physiological systems, I investigated how water limitations interact with immune function, metabolism, and reproductive investment, an almost entirely unexplored area. Using multiple species and life stages, I demonstrated that dehydrated animals typically have enhanced innate immunity, regardless of whether the dehydration is a result of seasonal water constraints, water deprivation in the lab, or high physiological demand for water. My work contributed greatly to the understanding of immune function dynamics and lays a foundation for the study of hydration immunology as a component of the burgeoning field of ecoimmunology. While a large portion of my dissertation focused on the interaction between water balance and immune function, there are many other physiological processes that may be impacted by water restrictions. Accordingly, I recently expanded the understanding of how reproductive females can alter metabolic substrates to reallocate internal water during times of water scarcity, an important development in our knowledge of reproductive investments. Overall, by thoroughly evaluating implications and responses to water limitations, my dissertation, when combined previous acquired knowledge on food limitation, will enable scientists to better predict the impacts of future climate change, where, in many regions, rainfall events are forecasted to be less reliable, resulting in more frequent drought.
ContributorsBrusch, George, IV (Author) / DeNardo, Dale F (Thesis advisor) / Blattman, Joseph (Committee member) / French, Susannah (Committee member) / Sabo, John (Committee member) / Taylor, Emily (Committee member) / Arizona State University (Publisher)
Created2019
154702-Thumbnail Image.png
Description
Despite the safe and effective use of attenuated vaccines for over fifty years, measles virus (MV) remains an insidious threat to global health. Problematically, infants less than one year of age, who are the most prone to severe infection and death by measles, cannot be immunized using current MV vaccines.

Despite the safe and effective use of attenuated vaccines for over fifty years, measles virus (MV) remains an insidious threat to global health. Problematically, infants less than one year of age, who are the most prone to severe infection and death by measles, cannot be immunized using current MV vaccines. For this dissertation, I generated and performed preclinical evaluation of two novel MV vaccine candidates. Based on data from clinical trials that showed increasing the dosage of current MV vaccines improved antibody responses in six-month-old recipients, I hypothesized that increasing the relevant antigenic stimulus of a standard titer dose would allow safe and effective immunization at a younger age. I generated two modified MVs with increased expression of the hemagglutinin (H) protein, the most important viral antigen for inducing protective neutralizing immunity, in the background of a current vaccine-equivalent. One virus, MVvac2-H2, expressed higher levels of full-length H, resulting in a three-fold increase in H incorporation into virions, while the second, MVvac2-Hsol, expressed and secreted truncated, soluble H protein to its extracellular environment. The alteration to the virion envelope of MVvac2-H2 conferred upon that virus a measurable resistance to in vitro neutralization. In initial screening in adult mouse models of vaccination, both modified MVs proved more immunogenic than their parental strain in outbred mice, while MVvac2-H2 additionally proved more immunogenic in the gold standard MV-susceptible mouse model. Remarkably, MVvac2-H2 better induced protective immunity in the presence of low levels of artificially introduced passive immunity that mimic the passive maternal immunity that currently limits vaccination of young infants, and that strongly inhibited responses to the current vaccine-equivalent. Finally, I developed a more physiological infant-like mouse model for MV vaccine testing, in which MV-susceptible dams vaccinated with the current vaccine-equivalent transfer passive immunity to their pups. This model will allow additional preclinical evaluation of the performance of MVvac2-H2 in pups of immune dams. Altogether, in this dissertation I identify a promising candidate, MVvac2-H2, for a next generation measles vaccine.
ContributorsJulik, Emily (Author) / Reyes del Valle, Jorge (Thesis advisor) / Chang, Yung (Committee member) / Blattman, Joseph (Committee member) / Hogue, Brenda (Committee member) / Nickerson, Cheryl (Committee member) / Arizona State University (Publisher)
Created2016