Matching Items (7,847)
Filtering by

Clear all filters

150055-Thumbnail Image.png
Description
This dissertation provides a fundamental understanding of the impact of bulk polymer properties on the nanometer length scale modulus. The elastic modulus of amorphous organic thin films is examined using a surface wrinkling technique. Potential correlations between thin film behavior and intrinsic properties such as flexibility and chain length are

This dissertation provides a fundamental understanding of the impact of bulk polymer properties on the nanometer length scale modulus. The elastic modulus of amorphous organic thin films is examined using a surface wrinkling technique. Potential correlations between thin film behavior and intrinsic properties such as flexibility and chain length are explored. Thermal properties, glass transition temperature (Tg) and the coefficient of thermal expansion, are examined along with the moduli of these thin films. It is found that the nanometer length scale behavior of flexible polymers correlates to its bulk Tg and not the polymers intrinsic size. It is also found that decreases in the modulus of ultrathin flexible films is not correlated with the observed Tg decrease in films of the same thickness. Techniques to circumvent reductions from bulk modulus were also demonstrated. However, as chain flexibility is reduced the modulus becomes thickness independent down to 10 nm. Similarly for this series minor reductions in Tg were obtained. To further understand the impact of the intrinsic size and processing conditions; this wrinkling instability was also utilized to determine the modulus of small organic electronic materials at various deposition conditions. Lastly, this wrinkling instability is exploited for development of poly furfuryl alcohol wrinkles. A two-step wrinkling process is developed via an acid catalyzed polymerization of a drop cast solution of furfuryl alcohol and photo acid generator. The ability to control the surface topology and tune the wrinkle wavelength with processing parameters such as substrate temperature and photo acid generator concentration is also demonstrated. Well-ordered linear, circular, and curvilinear patterns are also obtained by selective ultraviolet exposure and polymerization of the furfuryl alcohol film. As a carbon precursor a thorough understanding of this wrinkling instability can have applications in a wide variety of technologies.
ContributorsTorres, Jessica (Author) / Vogt, Bryan D (Thesis advisor) / Stafford, Christopher M (Committee member) / Richert, Ranko (Committee member) / Rege, Kaushal (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2011
150056-Thumbnail Image.png
Description
Bioparticles comprise a diverse amount of materials ubiquitously present in nature. From proteins to aerosolized biological debris, bioparticles have important roles spanning from regulating cellular functions to possibly influencing global climate. Understanding their structures, functions, and properties provides the necessary tools to expand our fundamental knowledge of biological

Bioparticles comprise a diverse amount of materials ubiquitously present in nature. From proteins to aerosolized biological debris, bioparticles have important roles spanning from regulating cellular functions to possibly influencing global climate. Understanding their structures, functions, and properties provides the necessary tools to expand our fundamental knowledge of biological systems and exploit them for useful applications. In order to contribute to this efforts, the work presented in this dissertation focuses on the study of electrokinetic properties of liposomes and novel applications of bioaerosol analysis. Using immobilized lipid vesicles under the influence of modest (less than 100 V/cm) electric fields, a novel strategy for bionanotubule fabrication with superior throughput and simplicity was developed. Fluorescence and bright field microscopy was used to describe the formation of these bilayer-bound cylindrical structures, which have been previously identified in nature (playing crucial roles in intercellular communication) and made synthetically by direct mechanical manipulation of membranes. In the biological context, the results of this work suggest that mechanical electrostatic interaction may play a role in the shape and function of individual biological membranes and networks of membrane-bound structures. A second project involving liposomes focused on membrane potential measurements in vesicles containing trans-membrane pH gradients. These types of gradients consist of differential charge states in the lipid bilayer leaflets, which have been shown to greatly influence the efficacy of drug targeting and the treatment of diseases such as cancer. Here, these systems are qualitatively and quantitatively assessed by using voltage-sensitive membrane dyes and fluorescence spectroscopy. Bioaerosol studies involved exploring the feasibility of a fingerprinting technology based on current understanding of cellular debris in aerosols and arguments regarding sampling, sensitivity, separations and detection schemes of these debris. Aerosolized particles of cellular material and proteins emitted by humans, animals and plants can be considered information-rich packets that carry biochemical information specific to the living organisms present in the collection settings. These materials could potentially be exploited for identification purposes. Preliminary studies evaluated protein concentration trends in both indoor and outdoor locations. Results indicated that concentrations correlate to certain conditions of the collection environment (e.g. extent of human presence), supporting the idea that bioaerosol fingerprinting is possible.
ContributorsCastillo Gutiérrez, Josemar Andreina (Author) / Hayes, Mark A. (Thesis advisor) / Herckes, Pierre (Committee member) / Ghrilanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2011
150060-Thumbnail Image.png
Description
Virtue was a concept of paramount importance in the American founders' republican thought. Without virtue, there could be no liberty, no order, no devotion to the common good, and no republican government. This dissertation examines the concept of virtue at the American founding, particularly virtue in the political thought of

Virtue was a concept of paramount importance in the American founders' republican thought. Without virtue, there could be no liberty, no order, no devotion to the common good, and no republican government. This dissertation examines the concept of virtue at the American founding, particularly virtue in the political thought of Mercy Otis Warren (1728-1814). The most important female intellectual of the Revolutionary generation, Warren wrote passionately about liberty and the beauty of republican ideals. Most important to this study, she consistently advocated the central place of virtue in a free and well-ordered republic. I argue that Warren incorporates three distinct philosophical threads - classical, bourgeois-marketplace, and Christian ideals - in her conception of virtue. I first analyze how Warren uses each of these three threads of virtue throughout her writings. I then examine how she synthesizes these individual threads into a single, cohesive conception of virtue. I argue that Warren consistently merges these ideals into a conception of virtue that she employs to address three pressing political problems of her day: How to motivate reluctant colonists to seek independence; how to check various forms of corruption spreading among the people; and how to counter corruption arising from commercial growth in the new nation. Modern political theorists often argue that these three threads, especially the classical republican and Christian ideals of virtue, are irreconcilable. My analysis shows that to divorce virtue from Christianity in Warren's conception is to rob it of its corrective vigor within republican government. I argue that what Machiavelli and Rousseau wrote out of republican virtue Warren writes back in. In Warren's political thought, virtue serves as the foundation for a stable enduring political system, provides the necessary informal ordering principle for the emerging republic, and offers the means by which the new nation could achieve its millennial destiny.
ContributorsMunsil, Tracy F (Author) / Ball, Terence (Thesis advisor) / Dagger, Richard (Thesis advisor) / Crittenden, William J. (Committee member) / Arizona State University (Publisher)
Created2011
149704-Thumbnail Image.png
Description
There has been a push to create and implement school wellness policies. Childhood obesity statistics suggest that schools may have an important role to play in promoting wellness. Childhood obesity has become a significant problem in the United States. The percentage of obese children in the United States has more

There has been a push to create and implement school wellness policies. Childhood obesity statistics suggest that schools may have an important role to play in promoting wellness. Childhood obesity has become a significant problem in the United States. The percentage of obese children in the United States has more than doubled since 1970, and up to 33% of the children in the United States are currently overweight. Among the 33% of children who are overweight, 25% are obese, and 14% have type 2 diabetes, previously considered to be a condition found only in adults. This mixed-method study with a string qualitative component study examined three aspects of federally mandated local wellness polices. The study investigated the policies themselves, how the policies are understood in the local school setting, with a particular focus on the impact the policies have had on school meals. The bulk of the research data was generated through 8 in-depth interviews. The interviews were conducted with key stakeholders within 2 elementary school districts in Arizona. In addition, the evaluation of 20 local wellness polices was conducted via a rubric scoring system. The primary component found to be lacking in local wellness policies was the evaluation method. Recommendations for school districts include the establishment of a clear method of measurement.
ContributorsCrawford, Sara S (Author) / Mccarty, Teresa L. (Thesis advisor) / Molnar, Alex (Thesis advisor) / Montoya, Araceli (Committee member) / Arizona State University (Publisher)
Created2011
149705-Thumbnail Image.png
Description
Family adaptation to child developmental disability is a dynamic transactional process that has yet to be tested in a longitudinal, rigorous fashion. In addition, although children with developmental delays frequently have behavior problems, not enough research has examined possible underlying mechanisms in the relation between child developmental delay, adaptation and

Family adaptation to child developmental disability is a dynamic transactional process that has yet to be tested in a longitudinal, rigorous fashion. In addition, although children with developmental delays frequently have behavior problems, not enough research has examined possible underlying mechanisms in the relation between child developmental delay, adaptation and behavior problems. In the current study, factor analysis examined how best to conceptualize the construct of family adaptation to developmental delay. Also, longitudinal growth curve modeling tested models in which child behavior problems mediated the relation between developmental risk and indices of family adaptation. Participants included 130 typically developing children and their families (Mental Development Index [MDI] > 85) and 104 children with developmental delays and their families (MDI < 85). Data were collected yearly between the ages of three and eight as part of a multi-site, longitudinal investigation examining the interrelations among children's developmental status, family processes, and the emergence of child psychopathology. Results of the current study indicated that adaptation is best conceptualized as a multi-index construct. Different aspects of adaptation changed in unique ways over time, with some facets of adaptation remaining stable while others fluctuated. Child internalizing and externalizing behavior problems were found to decrease over time for both children with developmental delays and typically developing children. Child behavior problems were also found to mediate the relation between developmental risk and family adaptation for over half of the mediation pathways. Significant mediation results indicated that children with developmental delays showed higher early levels of behavior problems, which in turn was associated with more maladaptive adaptation. These findings provide further evidence that families of children with developmental delays experience both positive and more challenging changes in their families over time. This study implies important next steps for research and clinical practice in the area of developmental disability.
ContributorsPedersen y Arbona, Anita (Author) / Crnic, Keith A (Thesis advisor) / Sandler, Irwin (Committee member) / Lemery, Kathryn (Committee member) / Enders, Craig (Committee member) / Arizona State University (Publisher)
Created2011
149707-Thumbnail Image.png
Description
Emission of CO2 into the atmosphere has become an increasingly concerning issue as we progress into the 21st century Flue gas from coal-burning power plants accounts for 40% of all carbon dioxide emissions. The key to successful separation and sequestration is to separate CO2 directly from flue gas

Emission of CO2 into the atmosphere has become an increasingly concerning issue as we progress into the 21st century Flue gas from coal-burning power plants accounts for 40% of all carbon dioxide emissions. The key to successful separation and sequestration is to separate CO2 directly from flue gas (10-15% CO2, 70% N2), which can range from a few hundred to as high as 1000°C. Conventional microporous membranes (carbons/silicas/zeolites) are capable of separating CO2 from N2 at low temperatures, but cannot achieve separation above 200°C. To overcome the limitations of microporous membranes, a novel ceramic-carbonate dual-phase membrane for high temperature CO2 separation was proposed. The membrane was synthesized from porous La0.6Sr0.4Co0.8Fe0.2O3-d (LSCF) supports and infiltrated with molten carbonate (Li2CO3/Na2CO3/K2CO3). The CO2 permeation mechanism involves a reaction between CO2 (gas phase) and O= (solid phase) to form CO3=, which is then transported through the molten carbonate (liquid phase) to achieve separation. The effects of membrane thickness, temperature and CO2 partial pressure were studied. Decreasing thickness from 3.0 to 0.375 mm led to higher fluxes at 900°C, ranging from 0.186 to 0.322 mL.min-1.cm-2 respectively. CO2 flux increased with temperature from 700 to 900°C. Activation energy for permeation was similar to that for oxygen ion conduction in LSCF. For partial pressures above 0.05 atm, the membrane exhibited a nearly constant flux. From these observations, it was determined that oxygen ion conductivity limits CO2 permeation and that the equilibrium oxygen vacancy concentration in LSCF is dependent on the partial pressure of CO2 in the gas phase. Finally, the dual-phase membrane was used as a membrane reactor. Separation at high temperatures can produce warm, highly concentrated streams of CO2 that could be used as a chemical feedstock for the synthesis of syngas (H2 + CO). Towards this, three different membrane reactor configurations were examined: 1) blank system, 2) LSCF catalyst and 3) 10% Ni/y-alumina catalyst. Performance increased in the order of blank system < LSCF catalyst < Ni/y-alumina catalyst. Favorable conditions for syngas production were high temperature (850°C), low sweep gas flow rate (10 mL.min-1) and high methane concentration (50%) using the Ni/y-alumina catalyst.
ContributorsAnderson, Matthew Brandon (Author) / Lin, Jerry (Thesis advisor) / Alford, Terry (Committee member) / Rege, Kaushal (Committee member) / Anderson, James (Committee member) / Rivera, Daniel (Committee member) / Arizona State University (Publisher)
Created2011
149710-Thumbnail Image.png
Description
Fuel cells, particularly solid oxide fuel cells (SOFC), are important for the future of greener and more efficient energy sources. Although SOFCs have been in existence for over fifty years, they have not been deployed extensively because they need to be operated at a high temperature (∼1000 °C), are expensive,

Fuel cells, particularly solid oxide fuel cells (SOFC), are important for the future of greener and more efficient energy sources. Although SOFCs have been in existence for over fifty years, they have not been deployed extensively because they need to be operated at a high temperature (∼1000 °C), are expensive, and have slow response to changes in energy demands. One important need for commercialization of SOFCs is a lowering of their operating temperature, which requires an electrolyte that can operate at lower temperatures. Doped ceria is one such candidate. For this dissertation work I have studied different types of doped ceria to understand the mechanism of oxygen vacancy diffusion through the bulk. Doped ceria is important because they have high ionic conductivities thus making them attractive candidates for the electrolytes of solid oxide fuel cells. In particular, I have studied how the ionic conductivities are improved in these doped materials by studying the oxygen-vacancy formations and migrations. In this dissertation I describe the application of density functional theory (DFT) and Kinetic Lattice Monte Carlo (KLMC) simulations to calculate the vacancy diffusion and ionic conductivities in doped ceria. The dopants used are praseodymium (Pr), gadolinium (Gd), and neodymium (Nd), all belonging to the lanthanide series. The activation energies for vacancy migration between different nearest neighbor (relative to the dopant) positions were calculated using the commercial DFT code VASP (Vienna Ab-initio Simulation Package). These activation energies were then used as inputs to the KLMC code that I co-developed. The KLMC code was run for different temperatures (673 K to 1073 K) and for different dopant concentrations (0 to 40%). These simulations have resulted in the prediction of dopant concentrations for maximum ionic conductivity at a given temperature.
ContributorsAnwar, Shahriar (Author) / Adams, James B (Thesis advisor) / Crozier, Peter (Committee member) / Krause, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
149711-Thumbnail Image.png
Description
An array of north-striking, left-stepping, active normal faults is situated along the southwestern margin of the Gulf of California. This normal fault system is the marginal fault system of the oblique-divergent plate boundary within the Gulf of California. To better understand the role of upper-crustal processes during development of an

An array of north-striking, left-stepping, active normal faults is situated along the southwestern margin of the Gulf of California. This normal fault system is the marginal fault system of the oblique-divergent plate boundary within the Gulf of California. To better understand the role of upper-crustal processes during development of an obliquely rifted plate margin, gravity surveys were conducted across the normal-fault-bounded basins within the gulf-margin array and, along with optically stimulated luminescence dating of offset surfaces, fault-slip rates were estimated and fault patterns across basins were assessed, providing insight into sedimentary basin evolution. Additionally, detailed geologic and geomorphic maps were constructed along two faults within the system, leading to a more complete understanding of the role of individual normal faults within a larger array. These faults slip at a low rate (0.1-1 mm/yr) and have relatively shallow hanging wall basins (~500-3000 m). Overall, the gulf-margin faults accommodate protracted, distributed deformation at a low rate and provide a minor contribution to overall rifting. Integrating figures with text can lead to greater science learning than when either medium is presented alone. Textbooks, composed of text and graphics, are a primary source of content in most geology classes. It is essential to understand how students approach learning from text and figures in textbook-style learning materials and how the arrangement of the text and figures influences their learning approach. Introductory geology students were eye tracked while learning from textbook-style materials composed of text and graphics. Eye fixation data showed that students spent less time examining the figure than the text, but the students who more frequently examined the figure tended to improve more from the pretest to the posttest. In general, students tended to examine the figure at natural breaks in the reading. Textbook-style materials should, therefore, be formatted to include a number of natural breaks so that learners can pause to inspect the figure without the risk of losing their place in the reading and to provide a chance to process the material in small chunks. Multimedia instructional materials should be designed to support the cognitive processes of the learner.
ContributorsBusch, Melanie M. D (Author) / Arrowsmith, Ramon (Thesis advisor) / Reynolds, Stephen (Thesis advisor) / Chi, Michelene (Committee member) / Semken, Steven (Committee member) / Tyburczy, James (Committee member) / Arizona State University (Publisher)
Created2011
149712-Thumbnail Image.png
Description
Type Ia supernovae are important, but mysterious cosmological tools. Their standard brightnesses have enabled cosmologists to measure extreme distances and to discover dark energy. However, the nature of their progenitor mechanisms remains elusive, with many competing models offering only partial clues to their origins. Here, type Ia supernova delay times

Type Ia supernovae are important, but mysterious cosmological tools. Their standard brightnesses have enabled cosmologists to measure extreme distances and to discover dark energy. However, the nature of their progenitor mechanisms remains elusive, with many competing models offering only partial clues to their origins. Here, type Ia supernova delay times are explored using analytical models. Combined with a new observation technique, this model places new constraints on the characteristic time delay between the formation of stars and the first type Ia supernovae. This derived delay time (500 million years) implies low-mass companions for single degenerate progenitor scenarios. In the latter portions of this dissertation, two progenitor mechanisms are simulated in detail; white dwarf collisions and mergers. From the first of these simulations, it is evident that white dwarf collisions offer a viable and unique pathway to producing type Ia supernovae. Many of the combinations of masses simulated produce sufficient quantities of 56Ni (up to 0.51 solar masses) to masquerade as normal type Ia supernovae. Other combinations of masses produce 56Ni yields that span the entire range of supernova brightnesses, from the very dim and underluminous, with 0.14 solar masses, to the over-bright and superluminous, with up to 1.71 solar masses. The 56Ni yield in the collision simulations depends non-linearly on total system mass, mass ratio, and impact parameter. Using the same numerical tools as in the collisions examination, white dwarf mergers are studied in detail. Nearly all of the simulations produce merger remnants consisting of a cold, degenerate core surrounded by a hot accretion disk. The properties of these disks have strong implications for various viscosity treatments that have attempted to pin down the accretion times. Some mass combinations produce super-Chandrasekhar cores on shorter time scales than viscosity driven accretion. A handful of simulations also exhibit helium detonations on the surface of the primary that bear a resemblance to helium novae. Finally, some of the preliminary groundwork that has been laid for constructing a new numerical tool is discussed. This new tool advances the merger simulations further than any research group has done before, and has the potential to answer some of the lingering questions that the merger study has uncovered. The results of thermal diffusion tests using this tool have a remarkable correspondence to analytical predictions.
ContributorsRaskin, Cody (Author) / Scannapieco, Evan (Thesis advisor) / Rhoads, James (Committee member) / Young, Patrick (Committee member) / Mcnamara, Allen (Committee member) / Timmes, Francis (Committee member) / Arizona State University (Publisher)
Created2011
150018-Thumbnail Image.png
Description
Parents die during the lives of their children. If the child is an adolescent, that death will impact the student's education immediately or in subsequent years. Findings show the death of a mother does impact the daughter's education. It is imperative educators are willing to work with the student at

Parents die during the lives of their children. If the child is an adolescent, that death will impact the student's education immediately or in subsequent years. Findings show the death of a mother does impact the daughter's education. It is imperative educators are willing to work with the student at the time the death occurs as well as in the ensuing months. Seidman's (2006) three-interview format was used as a template for the interviews of 11 women, ranging in age from 19 to 78 and whose mothers died when the women were adolescents. The interviews were primarily conducted in one sitting, transcribed, and then analyzed for common themes that connected to the research on the topic. Those themes include grieving, the role of caring in education, the role of teacher as the second mother, mother-daughter relationships, and the impact of parent death on schooling. These themes from the data cross cut with thematic strands within the study's theoretical framework: the nurturing and empathetic role of the mother, a desire of the daughter not to be different, and the ethics of caring. Findings in this study reveal that the negative impacts of mother loss are felt in diffuse ways, such as a lack of academic or emotional encouragement. Many women discussed the need and availability of support groups including groups at colleges. One practical implication of these findings is schools need to become caring communities in which caring is the norm for all students and teachers, thereby providing all students with needed support in times of crisis. The implications for further research include the impact of the mother death on the education of daughters, how volunteering with an organization related to the cause of the mother's death assists the daughter and types of programs most important to a student's success in post-secondary education. Adolescents are in a time of great change in their lives, and for a daughter, the loss of a mother has an everlasting, life-changing impact.
ContributorsRatti, Theresa Helen McLuskey (Author) / Mccarty, Teresa L (Thesis advisor) / Fischman, Gustavo E. (Committee member) / Powers, Jeanne M. (Committee member) / Arizona State University (Publisher)
Created2011