Matching Items (123)
Filtering by

Clear all filters

152233-Thumbnail Image.png
Description
Continuous monitoring in the adequate temporal and spatial scale is necessary for a better understanding of environmental variations. But field deployments of molecular biological analysis platforms in that scale are currently hindered because of issues with power, throughput and automation. Currently, such analysis is performed by the collection of large

Continuous monitoring in the adequate temporal and spatial scale is necessary for a better understanding of environmental variations. But field deployments of molecular biological analysis platforms in that scale are currently hindered because of issues with power, throughput and automation. Currently, such analysis is performed by the collection of large sample volumes from over a wide area and transporting them to laboratory testing facilities, which fail to provide any real-time information. This dissertation evaluates the systems currently utilized for in-situ field analyses and the issues hampering the successful deployment of such bioanalytial instruments for environmental applications. The design and development of high throughput, low power, and autonomous Polymerase Chain Reaction (PCR) instruments, amenable for portable field operations capable of providing quantitative results is presented here as part of this dissertation. A number of novel innovations have been reported here as part of this work in microfluidic design, PCR thermocycler design, optical design and systems integration. Emulsion microfluidics in conjunction with fluorinated oils and Teflon tubing have been used for the fluidic module that reduces cross-contamination eliminating the need for disposable components or constant cleaning. A cylindrical heater has been designed with the tubing wrapped around fixed temperature zones enabling continuous operation. Fluorescence excitation and detection have been achieved by using a light emitting diode (LED) as the excitation source and a photomultiplier tube (PMT) as the detector. Real-time quantitative PCR results were obtained by using multi-channel fluorescence excitation and detection using LED, optical fibers and a 64-channel multi-anode PMT for measuring continuous real-time fluorescence. The instrument was evaluated by comparing the results obtained with those obtained from a commercial instrument and found to be comparable. To further improve the design and enhance its field portability, this dissertation also presents a framework for the instrumentation necessary for a portable digital PCR platform to achieve higher throughputs with lower power. Both systems were designed such that it can easily couple with any upstream platform capable of providing nucleic acid for analysis using standard fluidic connections. Consequently, these instruments can be used not only in environmental applications, but portable diagnostics applications as well.
ContributorsRay, Tathagata (Author) / Youngbull, Cody (Thesis advisor) / Goryll, Michael (Thesis advisor) / Blain Christen, Jennifer (Committee member) / Yu, Hongyu (Committee member) / Arizona State University (Publisher)
Created2013
152134-Thumbnail Image.png
Description
Bright Summer, a one-movement piece for orchestra, was composed in Arizona, and completed in February 2013. The piece is approximately twelve minutes long. The motivation for writing this piece was the death of my mother the year before, in 2012. The prevailing mood of this work is bright and pleasant,

Bright Summer, a one-movement piece for orchestra, was composed in Arizona, and completed in February 2013. The piece is approximately twelve minutes long. The motivation for writing this piece was the death of my mother the year before, in 2012. The prevailing mood of this work is bright and pleasant, expressing my mother's cheerful personality when she was alive. It also portrays bright summer days which resemble my mother's spirit. Thus, soundscape plays an important role in this work. It depicts summer breeze, rustling sounds of leaves, and, to translate a Korean saying, "high blue skies." This soundscape opens the piece as well as closes it. In the middle section, the fast upbeat themes represent my mother's witty and optimistic personality. The piece also contains the presence of a hymn tune, The Love of God is Greater Far, which informs the motivic content and also functions as the climax of the piece. It was my mother's favorite hymn and we used to sing it together following her conversion to Christianity. The piece contains three main sections, which are held together by transitional material based on the soundscape and metric modulations. Unlike my earlier works, Bright Summer is tonal, with upper tertian harmonies prevailing throughout the piece. However, the opening and closing soundscapes do not have functional harmonies. For example, tertian chords appear and vanish silently, leaving behind some resonant sounds without any harmonic progression. Overall, the whole piece is reminiscent of my mother who lived a beautiful life.
ContributorsKim, JeeYeon (Composer) / DeMars, James (Thesis advisor) / Hackbarth, Glenn (Committee member) / Rogers, Rodney (Committee member) / Levy, Benjamin (Committee member) / Rockmaker, Jody (Committee member) / Arizona State University (Publisher)
Created2013
151953-Thumbnail Image.png
Description
Distributed inference has applications in a wide range of fields such as source localization, target detection, environment monitoring, and healthcare. In this dissertation, distributed inference schemes which use bounded transmit power are considered. The performance of the proposed schemes are studied for a variety of inference problems. In the first

Distributed inference has applications in a wide range of fields such as source localization, target detection, environment monitoring, and healthcare. In this dissertation, distributed inference schemes which use bounded transmit power are considered. The performance of the proposed schemes are studied for a variety of inference problems. In the first part of the dissertation, a distributed detection scheme where the sensors transmit with constant modulus signals over a Gaussian multiple access channel is considered. The deflection coefficient of the proposed scheme is shown to depend on the characteristic function of the sensing noise, and the error exponent for the system is derived using large deviation theory. Optimization of the deflection coefficient and error exponent are considered with respect to a transmission phase parameter for a variety of sensing noise distributions including impulsive ones. The proposed scheme is also favorably compared with existing amplify-and-forward (AF) and detect-and-forward (DF) schemes. The effect of fading is shown to be detrimental to the detection performance and simulations are provided to corroborate the analytical results. The second part of the dissertation studies a distributed inference scheme which uses bounded transmission functions over a Gaussian multiple access channel. The conditions on the transmission functions under which consistent estimation and reliable detection are possible is characterized. For the distributed estimation problem, an estimation scheme that uses bounded transmission functions is proved to be strongly consistent provided that the variance of the noise samples are bounded and that the transmission function is one-to-one. The proposed estimation scheme is compared with the amplify and forward technique and its robustness to impulsive sensing noise distributions is highlighted. It is also shown that bounded transmissions suffer from inconsistent estimates if the sensing noise variance goes to infinity. For the distributed detection problem, similar results are obtained by studying the deflection coefficient. Simulations corroborate our analytical results. In the third part of this dissertation, the problem of estimating the average of samples distributed at the nodes of a sensor network is considered. A distributed average consensus algorithm in which every sensor transmits with bounded peak power is proposed. In the presence of communication noise, it is shown that the nodes reach consensus asymptotically to a finite random variable whose expectation is the desired sample average of the initial observations with a variance that depends on the step size of the algorithm and the variance of the communication noise. The asymptotic performance is characterized by deriving the asymptotic covariance matrix using results from stochastic approximation theory. It is shown that using bounded transmissions results in slower convergence compared to the linear consensus algorithm based on the Laplacian heuristic. Simulations corroborate our analytical findings. Finally, a robust distributed average consensus algorithm in which every sensor performs a nonlinear processing at the receiver is proposed. It is shown that non-linearity at the receiver nodes makes the algorithm robust to a wide range of channel noise distributions including the impulsive ones. It is shown that the nodes reach consensus asymptotically and similar results are obtained as in the case of transmit non-linearity. Simulations corroborate our analytical findings and highlight the robustness of the proposed algorithm.
ContributorsDasarathan, Sivaraman (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Reisslein, Martin (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2013
151773-Thumbnail Image.png
Description
Norwegian composer Ola Gjeilo (b. 1978) is highly regarded as an accomplished and prolific composer of choral music. His creative output includes works for chorus, solo piano, and wind symphony. His unique style infuses elements of cinematic music, jazz and improvisation, with particularly intriguing selections of text. This study examines

Norwegian composer Ola Gjeilo (b. 1978) is highly regarded as an accomplished and prolific composer of choral music. His creative output includes works for chorus, solo piano, and wind symphony. His unique style infuses elements of cinematic music, jazz and improvisation, with particularly intriguing selections of text. This study examines the factors that influence Gjeilo's compositional techniques, and the musical interpretations of conductor Charles Bruffy in his preparation for The Phoenix Chorale's recording Northern Lights: Choral Works by Ola Gjeilo. The eleven works discussed in this study are: The Ground, Evening Prayer, Ubi caritas, Prelude, Northern Lights, The Spheres, Tota pulchra es, Serenity, Phoenix (Agnus Dei), Unicornis captivatur, and Dark Night of the Soul. As a relatively new and young composer, there is very little published literature on Gjeilo and his works. This study provides an intimate glance into the creative process of the composer. By composing in multiple styles and with a variety of inspirational sources, Gjeilo creates a fresh approach toward composition of new choral music. His style is revealed through interviews and numerous collaborations with conductors and performers who have prepared and performed his music, as well through an examination of the eleven works recorded by The Phoenix Chorale.
ContributorsGarrison, Ryan Derrick (Author) / Reber, William (Thesis advisor) / Saucier, Catherine (Committee member) / Rockmaker, Jody (Committee member) / Doan, Jerry (Committee member) / Arizona State University (Publisher)
Created2013
151814-Thumbnail Image.png
Description
This research emphasizes the use of low energy and low temperature post processing to improve the performance and lifetime of thin films and thin film transistors, by applying the fundamentals of interaction of materials with conductive heating and electromagnetic radiation. Single frequency microwave anneal is used to rapidly recrystallize the

This research emphasizes the use of low energy and low temperature post processing to improve the performance and lifetime of thin films and thin film transistors, by applying the fundamentals of interaction of materials with conductive heating and electromagnetic radiation. Single frequency microwave anneal is used to rapidly recrystallize the damage induced during ion implantation in Si substrates. Volumetric heating of the sample in the presence of the microwave field facilitates quick absorption of radiation to promote recrystallization at the amorphous-crystalline interface, apart from electrical activation of the dopants due to relocation to the substitutional sites. Structural and electrical characterization confirm recrystallization of heavily implanted Si within 40 seconds anneal time with minimum dopant diffusion compared to rapid thermal annealed samples. The use of microwave anneal to improve performance of multilayer thin film devices, e.g. thin film transistors (TFTs) requires extensive study of interaction of individual layers with electromagnetic radiation. This issue has been addressed by developing detail understanding of thin films and interfaces in TFTs by studying reliability and failure mechanisms upon extensive stress test. Electrical and ambient stresses such as illumination, thermal, and mechanical stresses are inflicted on the mixed oxide based thin film transistors, which are explored due to high mobilities of the mixed oxide (indium zinc oxide, indium gallium zinc oxide) channel layer material. Semiconductor parameter analyzer is employed to extract transfer characteristics, useful to derive mobility, subthreshold, and threshold voltage parameters of the transistors. Low temperature post processing anneals compatible with polymer substrates are performed in several ambients (oxygen, forming gas and vacuum) at 150 °C as a preliminary step. The analysis of the results pre and post low temperature anneals using device physics fundamentals assists in categorizing defects leading to failure/degradation as: oxygen vacancies, thermally activated defects within the bandgap, channel-dielectric interface defects, and acceptor-like or donor-like trap states. Microwave anneal has been confirmed to enhance the quality of thin films, however future work entails extending the use of electromagnetic radiation in controlled ambient to facilitate quick post fabrication anneal to improve the functionality and lifetime of these low temperature fabricated TFTs.
ContributorsVemuri, Rajitha (Author) / Alford, Terry L. (Thesis advisor) / Theodore, N David (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2013
151610-Thumbnail Image.png
Description
This thesis presents a new arrangement of Richard Peaslee's trombone solo "Arrows of Time" for brass band. This arrangement adapts Peaslee's orchestration - and subsequent arrangement by Dr. Joshua Hauser for wind ensemble - for the modern brass band instrumentation and includes a full score. A brief biography of Richard

This thesis presents a new arrangement of Richard Peaslee's trombone solo "Arrows of Time" for brass band. This arrangement adapts Peaslee's orchestration - and subsequent arrangement by Dr. Joshua Hauser for wind ensemble - for the modern brass band instrumentation and includes a full score. A brief biography of Richard Peaslee and his work accompanies this new arrangement, along with commentary on the orchestration of "Arrows of Time", and discussion of the evolution and adaptation of the work for wind ensemble by Dr. Hauser. The methodology used to adapt these versions for the brass band completes the background information.
ContributorsMalloy, Jason Patrick (Author) / Ericson, John (Thesis advisor) / Oldani, Robert (Committee member) / Rockmaker, Jody (Committee member) / Arizona State University (Publisher)
Created2013
152405-Thumbnail Image.png
Description
The German pianist and composer Johannes Brahms (1883-1897) wrote more than 122 works for a wide variety of ensembles and genres. Despite this remarkable productivity, and his widely heralded talent for innovation and technique as a composer, few of his works have been arranged for solo guitar, and these have

The German pianist and composer Johannes Brahms (1883-1897) wrote more than 122 works for a wide variety of ensembles and genres. Despite this remarkable productivity, and his widely heralded talent for innovation and technique as a composer, few of his works have been arranged for solo guitar, and these have focused primarily on his simpler, more melodic works. Conventional wisdom is that his music is "too dense" to be played on the guitar. As a result, there are no arrangements of orchestral works by Brahms in the standard repertoire for the guitar. In arranging Brahms's Serenade in D Major, movt. 1 for the guitar, I provide a counter argument that not all of Brahms's orchestral music is too dense all of the time. In Part I, I provide a brief overview of the history of, and sources for, the Serenade. Part II describes a step-by-step guide through the process of arranging orchestral repertoire for the solo guitar. Part III is an examination of the editing process that utilizes examples from the guitar arrangement of the Serenade in order to illustrate the various techniques and considerations that are part of the editing process. Part IV is a performance edition of the arrangement. In summary, the present arrangement of Brahms's Serenade, op.11 is the beginning of a conversation about why the "guitar world" should be incorporating the music of Brahms into the standard repertoire. The lessons learned, and the technical challenges discovered, should help inform future arrangers and guitar performers for additional compositions by Brahms.
ContributorsLanier, William Hudson (Author) / Koonce, Frank (Thesis advisor) / Micklich, Albie (Committee member) / Rockmaker, Jody (Committee member) / Arizona State University (Publisher)
Created2013
152555-Thumbnail Image.png
Description
Nelson Rolihlahla Mandela was born July 18, 1918 into the Madiba clan in Mvezo, Transkei, South Africa. Mandela was a lawyer by trade and a freedom fighter who envisioned freedom and equality for all South Africans regardless of race. In 1965, Mandela was imprisoned at Robben Island for twenty-seven years

Nelson Rolihlahla Mandela was born July 18, 1918 into the Madiba clan in Mvezo, Transkei, South Africa. Mandela was a lawyer by trade and a freedom fighter who envisioned freedom and equality for all South Africans regardless of race. In 1965, Mandela was imprisoned at Robben Island for twenty-seven years for treason and terrorist activities against the South African apartheid regime: he was assigned prison numbers 46664. In 1992, Mandela was released from prison and two years later not only became the first democratically elected president of South Africa, but also its first black president. "Madiba 46664" is an eight-minute chamber work scored for flute, oboe, clarinet in B-flat, and bassoon; vibraphone, and two percussionists; piano; violins, violas, and celli. The work blends traditional South African rhythms of the drumming culture with elements of Western harmony and form in contrasting textures of homophony, polyphony and antiphony. "Madiba 46664" utilizes Mandela's prison number, birthdate and age (at the time the composition process began in 2013) for the initial generation of meter, rhythm, harmony, melody, and form. The work also shares intercultural concepts that can be seen in the works of three contemporary African composers, South Africans Jeanne Zaidel-Rudolph and Andile Khumalo, and Nigerian Ayo Oluranti. Each section represents a period of Mandela's life as a freedom fighter, a prisoner, and a president. The inspiration stems from the composer's discussions with Mandela soon after his release from prison and prior to his presidency. These lively discussions pertained to the state of traditional music in then apartheid South Africa and led to this creation. The conversations also played a role in the creative process.
ContributorsMabingnai, Collette Sipho (Composer) / DeMars, James (Thesis advisor) / Hackbarth, Glenn (Committee member) / Humphreys, Jere (Committee member) / Rockmaker, Jody (Committee member) / Rogers, Rodney (Committee member) / Arizona State University (Publisher)
Created2014
152285-Thumbnail Image.png
Description
Zinc oxide (ZnO), a naturally n-type semiconductor has been identified as a promising candidate to replace indium tin oxide (ITO) as the transparent electrode in solar cells, because of its wide bandgap (3.37 eV), abundant source materials and suitable refractive index (2.0 at 600 nm). Spray deposition is a convenient

Zinc oxide (ZnO), a naturally n-type semiconductor has been identified as a promising candidate to replace indium tin oxide (ITO) as the transparent electrode in solar cells, because of its wide bandgap (3.37 eV), abundant source materials and suitable refractive index (2.0 at 600 nm). Spray deposition is a convenient and low cost technique for large area and uniform deposition of semiconductor thin films. In particular, it provides an easier way to dope the film by simply adding the dopant precursor into the starting solution. In order to reduce the resistivity of undoped ZnO, many works have been done by doping in the ZnO with either group IIIA elements or VIIA elements using spray pyrolysis. However, the resistivity is still too high to meet TCO's resistivity requirement. In the present work, a novel co-spray deposition technique is developed to bypass a fundamental limitation in the conventional spray deposition technique, i.e. the deposition of metal oxides from incompatible precursors in the starting solution. With this technique, ZnO films codoped with one cationic dopant, Al, Cr, or Fe, and an anionic dopant, F, have been successfully synthesized, in which F is incompatible with all these three cationic dopants. Two starting solutions were prepared and co-sprayed through two separate spray heads. One solution contained only the F precursor, NH 4F. The second solution contained the Zn and one cationic dopant precursors, Zn(O 2CCH 3) 2 and AlCl 3, CrCl 3, or FeCl 3. The deposition was carried out at 500 &degC; on soda-lime glass in air. Compared to singly-doped ZnO thin films, codoped ZnO samples showed better electrical properties. Besides, a minimum sheet resistance, 55.4 Ω/sq, was obtained for Al and F codoped ZnO films after vacuum annealing at 400 &degC;, which was lower than singly-doped ZnO with either Al or F. The transmittance for the Al and F codoped ZnO samples was above 90% in the visible range. This co-spray deposition technique provides a simple and cost-effective way to synthesize metal oxides from incompatible precursors with improved properties.
ContributorsZhou, Bin (Author) / Tao, Meng (Thesis advisor) / Goryll, Michael (Committee member) / Vasileska, Dragica (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2013
152288-Thumbnail Image.png
Description
Chalcogenide glass (ChG) materials have gained wide attention because of their applications in conductive bridge random access memory (CBRAM), phase change memories (PC-RAM), optical rewritable disks (CD-RW and DVD-RW), microelectromechanical systems (MEMS), microfluidics, and optical communications. One of the significant properties of ChG materials is the change in the resistivity

Chalcogenide glass (ChG) materials have gained wide attention because of their applications in conductive bridge random access memory (CBRAM), phase change memories (PC-RAM), optical rewritable disks (CD-RW and DVD-RW), microelectromechanical systems (MEMS), microfluidics, and optical communications. One of the significant properties of ChG materials is the change in the resistivity of the material when a metal such as Ag or Cu is added to it by diffusion. This study demonstrates the potential radiation-sensing capabilities of two metal/chalcogenide glass device configurations. Lateral and vertical device configurations sense the radiation-induced migration of Ag+ ions in germanium selenide glasses via changes in electrical resistance between electrodes on the ChG. Before irradiation, these devices exhibit a high-resistance `OFF-state' (in the order of 10E12) but following irradiation, with either 60-Co gamma-rays or UV light, their resistance drops to a low-resistance `ON-state' (around 10E3). Lateral devices have exhibited cyclical recovery with room temperature annealing of the Ag doped ChG, which suggests potential uses in reusable radiation sensor applications. The feasibility of producing inexpensive flexible radiation sensors has been demonstrated by studying the effects of mechanical strain and temperature stress on sensors formed on flexible polymer substrate. The mechanisms of radiation-induced Ag/Ag+ transport and reactions in ChG have been modeled using a finite element device simulator, ATLAS. The essential reactions captured by the simulator are radiation-induced carrier generation, combined with reduction/oxidation for Ag species in the chalcogenide film. Metal-doped ChGs are solid electrolytes that have both ionic and electronic conductivity. The ChG based Programmable Metallization Cell (PMC) is a technology platform that offers electric field dependent resistance switching mechanisms by formation and dissolution of nano sized conductive filaments in a ChG solid electrolyte between oxidizable and inert electrodes. This study identifies silver anode agglomeration in PMC devices following large radiation dose exposure and considers device failure mechanisms via electrical and material characterization. The results demonstrate that by changing device structural parameters, silver agglomeration in PMC devices can be suppressed and reliable resistance switching may be maintained for extremely high doses ranging from 4 Mrad(GeSe) to more than 10 Mrad (ChG).
ContributorsDandamudi, Pradeep (Author) / Kozicki, Michael N (Thesis advisor) / Barnaby, Hugh J (Committee member) / Holbert, Keith E. (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2013