Matching Items (156)
Filtering by

Clear all filters

151874-Thumbnail Image.png
Description
Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and

Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and a novel wind farm control approach has been modeled. The possibility of using lidar measurements to more fully characterize the wind field is discussed, specifically, terrain effects, spatial variation of winds, power density, and the effect of shear at different layers within the rotor swept area. Various vector retrieval methods have been applied to the lidar data, and results are presented on an elevated terrain-following surface at hub height. The vector retrieval estimates are compared with tower measurements, after interpolation to the appropriate level. CDL data is used to estimate the spatial power density at hub height. Since CDL can measure winds at different vertical levels, an approach for estimating wind power density over the wind turbine rotor-swept area is explored. Sample optimized layouts of wind farm using lidar data and global optimization algorithms, accounting for wake interaction effects, have been explored. An approach to evaluate spatial wind speed and direction estimates from a standard nested Coupled Ocean and Atmosphere Mesoscale Prediction System (COAMPS) model and CDL is presented. The magnitude of spatial difference between observations and simulation for wind energy assessment is researched. Diurnal effects and ramp events as estimated by CDL and COAMPS were inter-compared. Novel wind farm control based on incoming winds and direction input from CDL's is developed. Both yaw and pitch control using scanning CDL for efficient wind farm control is analyzed. The wind farm control optimizes power production and reduces loads on wind turbines for various lidar wind speed and direction inputs, accounting for wind farm wake losses and wind speed evolution. Several wind farm control configurations were developed, for enhanced integrability into the electrical grid. Finally, the value proposition of CDL for a wind farm development, based on uncertainty reduction and return of investment is analyzed.
ContributorsKrishnamurthy, Raghavendra (Author) / Calhoun, Ronald J (Thesis advisor) / Chen, Kangping (Committee member) / Huang, Huei-Ping (Committee member) / Fraser, Matthew (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
151693-Thumbnail Image.png
Description
The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules

The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules with the particular property. DNA and RNA sequences with versatile functions have been identified by in vitro selection experiments, but many basic questions remain to be answered about how these molecules achieve their functions. This dissertation first focuses on addressing a fundamental question regarding the molecular recognition properties of in vitro selected DNA sequences, namely whether negatively charged DNA sequences can be evolved to bind alkaline proteins with high specificity. We showed that DNA binders could be made, through carefully designed stringent in vitro selection, to discriminate different alkaline proteins. The focus of this dissertation is then shifted to in vitro evolution of an artificial genetic polymer called threose nucleic acid (TNA). TNA has been considered a potential RNA progenitor during early evolution of life on Earth. However, further experimental evidence to support TNA as a primordial genetic material is lacking. In this dissertation we demonstrated the capacity of TNA to form stable tertiary structure with specific ligand binding property, which suggests a possible role of TNA as a pre-RNA genetic polymer. Additionally, we discussed the challenges in in vitro evolution for TNA enzymes and developed the necessary methodology for future TNA enzyme evolution.
ContributorsYu, Hanyang (Author) / Chaput, John C (Thesis advisor) / Chen, Julian (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2013
152239-Thumbnail Image.png
Description
Production from a high pressure gas well at a high production-rate encounters the risk of operating near the choking condition for a compressible flow in porous media. The unbounded gas pressure gradient near the point of choking, which is located near the wellbore, generates an effective tensile stress on the

Production from a high pressure gas well at a high production-rate encounters the risk of operating near the choking condition for a compressible flow in porous media. The unbounded gas pressure gradient near the point of choking, which is located near the wellbore, generates an effective tensile stress on the porous rock frame. This tensile stress almost always exceeds the tensile strength of the rock and it causes a tensile failure of the rock, leading to wellbore instability. In a porous rock, not all pores are choked at the same flow rate, and when just one pore is choked, the flow through the entire porous medium should be considered choked as the gas pressure gradient at the point of choking becomes singular. This thesis investigates the choking condition for compressible gas flow in a single microscopic pore. Quasi-one-dimensional analysis and axisymmetric numerical simulations of compressible gas flow in a pore scale varicose tube with a number of bumps are carried out, and the local Mach number and pressure along the tube are computed for the flow near choking condition. The effects of tube length, inlet-to-outlet pressure ratio, the number of bumps and the amplitude of the bumps on the choking condition are obtained. These critical values provide guidance for avoiding the choking condition in practice.
ContributorsYuan, Jing (Author) / Chen, Kangping (Thesis advisor) / Wang, Liping (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
152086-Thumbnail Image.png
Description
The ribosome is a ribozyme and central to the biosynthesis of proteins in all organisms. It has a strong bias against non-alpha-L-amino acids, such as alpha-D-amino acids and beta-amino acids. Additionally, the ribosome is only able to incorporate one amino acid in response to one codon. It has been demonstrated

The ribosome is a ribozyme and central to the biosynthesis of proteins in all organisms. It has a strong bias against non-alpha-L-amino acids, such as alpha-D-amino acids and beta-amino acids. Additionally, the ribosome is only able to incorporate one amino acid in response to one codon. It has been demonstrated that reengineering of the peptidyltransferase center (PTC) of the ribosome enabled the incorporation of both alpha-D-amino acids and beta-amino acids into full length protein. Described in Chapter 2 are five modified ribosomes having modifications in the peptidyltrasnferase center in the 23S rRNA. These modified ribosomes successfully incorporated five different beta-amino acids (2.1 - 2.5) into E. coli dihydrofolate reductase (DHFR). The second project (Chapter 3) focused on the study of the modified ribosomes facilitating the incorporation of the dipeptide glycylphenylalanine (3.25) and fluorescent dipeptidomimetic 3.26 into DHFR. These ribosomes also had modifications in the peptidyltransferase center in the 23S rRNA of the 50S ribosomal subunit. The modified DHFRs having beta-amino acids 2.3 and 2.5, dipeptide glycylphenylalanine (3.25) and dipeptidomimetic 3.26 were successfully characterized by the MALDI-MS analysis of the peptide fragments produced by "in-gel" trypsin digestion of the modified proteins. The fluorescent spectra of the dipeptidomimetic 3.26 and modified DHFR having fluorescent dipeptidomimetic 3.26 were also measured. The type I and II DNA topoisomerases have been firmly established as effective molecular targets for many antitumor drugs. A "classical" topoisomerase I or II poison acts by misaligning the free hydroxyl group of the sugar moiety of DNA and preventing the reverse transesterfication reaction to religate DNA. There have been only two classes of compounds, saintopin and topopyrones, reported as dual topoisomerase I and II poisons. Chapter 4 describes the synthesis and biological evaluation of topopyrones. Compound 4.10, employed at 20 µM, was as efficient as 0.5 uM camptothecin, a potent topoisomerase I poison, in stabilizing the covalent binary complex (~30%). When compared with a known topoisomerase II poison, etoposide (at 0.5 uM), topopyorone 4.10 produced similar levels of stabilized DNA-enzyme binary complex (~34%) at 5 uM concentration.
ContributorsMaini, Rumit (Author) / Hecht, Sidney M. (Thesis advisor) / Gould, Ian (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2013
152245-Thumbnail Image.png
Description
The biological and chemical diversity of protein structure and function can be greatly expanded by position-specific incorporation of non-natural amino acids bearing a variety of functional groups. Non-cognate amino acids can be incorporated into proteins at specific sites by using orthogonal aminoacyl-tRNA synthetase/tRNA pairs in conjunction with nonsense, rare, or

The biological and chemical diversity of protein structure and function can be greatly expanded by position-specific incorporation of non-natural amino acids bearing a variety of functional groups. Non-cognate amino acids can be incorporated into proteins at specific sites by using orthogonal aminoacyl-tRNA synthetase/tRNA pairs in conjunction with nonsense, rare, or 4-bp codons. There has been considerable progress in developing new types of amino acids, in identifying novel methods of tRNA aminoacylation, and in expanding the genetic code to direct their position. Chemical aminoacylation of tRNAs is accomplished by acylation and ligation of a dinucleotide (pdCpA) to the 3'-terminus of truncated tRNA. This strategy allows the incorporation of a wide range of natural and unnatural amino acids into pre-determined sites, thereby facilitating the study of structure-function relationships in proteins and allowing the investigation of their biological, biochemical and biophysical properties. Described in Chapter 1 is the current methodology for synthesizing aminoacylated suppressor tRNAs. Aminoacylated suppressor tRNACUAs are typically prepared by linking pre-aminoacylated dinucleotides (aminoacyl-pdCpAs) to 74 nucleotide (nt) truncated tRNAs (tRNA-COH) via a T4 RNA ligase mediated reaction. Alternatively, there is another route outlined in Chapter 1 that utilizes a different pre-aminoacylated dinucleotide, AppA. This dinucleotide has been shown to be a suitable substrate for T4 RNA ligase mediated coupling with abbreviated tRNA-COHs for production of 76 nt aminoacyl-tRNACUAs. The synthesized suppressor tRNAs have been shown to participate in protein synthesis in vitro, in an S30 (E. coli) coupled transcription-translation system in which there is a UAG codon in the mRNA at the position corresponding to Val10. Chapter 2 describes the synthesis of two non-proteinogenic amino acids, L-thiothreonine and L-allo-thiothreonine, and their incorporation into predetermined positions of a catalytically competent dihydrofolate reductase (DHFR) analogue lacking cysteine. Here, the elaborated proteins were site-specifically derivitized with a fluorophore at the thiothreonine residue. The synthesis and incorporation of phosphorotyrosine derivatives into DHFR is illustrated in Chapter 3. Three different phosphorylated tyrosine derivatives were prepared: bis-nitrobenzylphosphoro-L-tyrosine, nitrobenzylphosphoro-L-tyrosine, and phosphoro-L-tyrosine. Their ability to participate in a protein synthesis system was also evaluated.
ContributorsNangreave, Ryan Christopher (Author) / Hecht, Sidney M. (Thesis advisor) / Yan, Hao (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2013
152249-Thumbnail Image.png
Description
For CFD validation, hypersonic flow fields are simulated and compared with experimental data specifically designed to recreate conditions found by hypersonic vehicles. Simulated flow fields on a cone-ogive with flare at Mach 7.2 are compared with experimental data from NASA Ames Research Center 3.5" hypersonic wind tunnel. A parametric study

For CFD validation, hypersonic flow fields are simulated and compared with experimental data specifically designed to recreate conditions found by hypersonic vehicles. Simulated flow fields on a cone-ogive with flare at Mach 7.2 are compared with experimental data from NASA Ames Research Center 3.5" hypersonic wind tunnel. A parametric study of turbulence models is presented and concludes that the k-kl-omega transition and SST transition turbulence model have the best correlation. Downstream of the flare's shockwave, good correlation is found for all boundary layer profiles, with some slight discrepancies of the static temperature near the surface. Simulated flow fields on a blunt cone with flare above Mach 10 are compared with experimental data from CUBRC LENS hypervelocity shock tunnel. Lack of vibrational non-equilibrium calculations causes discrepancies in heat flux near the leading edge. Temperature profiles, where non-equilibrium effects are dominant, are compared with the dissociation of molecules to show the effects of dissociation on static temperature. Following the validation studies is a parametric analysis of a hypersonic inlet from Mach 6 to 20. Compressor performance is investigated for numerous cowl leading edge locations up to speeds of Mach 10. The variable cowl study showed positive trends in compressor performance parameters for a range of Mach numbers that arise from maximizing the intake of compressed flow. An interesting phenomenon due to the change in shock wave formation for different Mach numbers developed inside the cowl that had a negative influence on the total pressure recovery. Investigation of the hypersonic inlet at different altitudes is performed to study the effects of Reynolds number, and consequently, turbulent viscous effects on compressor performance. Turbulent boundary layer separation was noted as the cause for a change in compressor performance parameters due to a change in Reynolds number. This effect would not be noticeable if laminar flow was assumed. Mach numbers up to 20 are investigated to study the effects of vibrational and chemical non-equilibrium on compressor performance. A direct impact on the trends on the kinetic energy efficiency and compressor efficiency was found due to dissociation.
ContributorsOliden, Daniel (Author) / Lee, Tae-Woo (Thesis advisor) / Peet, Yulia (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
152067-Thumbnail Image.png
Description
A new theoretical model was developed utilizing energy conservation methods in order to determine the fully-atomized cross-sectional Sauter mean diameters of pressure-swirl atomizers. A detailed boundary-layer assessment led to the development of a new viscous dissipation model for droplets in the spray. Integral momentum methods were also used to determine

A new theoretical model was developed utilizing energy conservation methods in order to determine the fully-atomized cross-sectional Sauter mean diameters of pressure-swirl atomizers. A detailed boundary-layer assessment led to the development of a new viscous dissipation model for droplets in the spray. Integral momentum methods were also used to determine the complete velocity history of the droplets and entrained gas in the spray. The model was extensively validated through comparison with experiment and it was found that the model could predict the correct droplet size with high accuracy for a wide range of operating conditions. Based on detailed analysis, it was found that the energy model has a tendency to overestimate the droplet diameters for very low injection velocities, Weber numbers, and cone angles. A full parametric study was also performed in order to unveil some underlying behavior of pressure-swirl atomizers. It was found that at high injection velocities, the kinetic energy in the spray is significantly larger than the surface tension energy, therefore, efforts into improving atomization quality by changing the liquid's surface tension may not be the most productive. From the parametric studies it was also shown how the Sauter mean diameter and entrained velocities vary with increasing ambient gas density. Overall, the present energy model has the potential to provide quick and reasonably accurate solutions for a wide range of operating conditions enabling the user to determine how different injection parameters affect the spray quality.
ContributorsMoradi, Ali (Author) / Lee, Taewoo (Thesis advisor) / Herrmann, Marcus (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2013
151753-Thumbnail Image.png
Description
Solution conformations and dynamics of proteins and protein-DNA complexes are often difficult to predict from their crystal structures. The crystal structure only shows a snapshot of the different conformations these biological molecules can have in solution. Multiple different conformations can exist in solution and potentially have more importance in the

Solution conformations and dynamics of proteins and protein-DNA complexes are often difficult to predict from their crystal structures. The crystal structure only shows a snapshot of the different conformations these biological molecules can have in solution. Multiple different conformations can exist in solution and potentially have more importance in the biological activity. DNA sliding clamps are a family of proteins with known crystal structures. These clamps encircle the DNA and enable other proteins to interact more efficiently with the DNA. Eukaryotic PCNA and prokaryotic β clamp are two of these clamps, some of the most stable homo-oligomers known. However, their solution stability and conformational equilibrium have not been investigated in depth before. Presented here are the studies involving two sliding clamps: yeast PCNA and bacterial β clamp. These studies show that the β clamp has a very different solution stability than PCNA. These conclusions were reached through various different fluorescence-based experiments, including fluorescence correlation spectroscopy (FCS), Förster resonance energy transfer (FRET), single molecule fluorescence, and various time resolved fluorescence techniques. Interpretations of these, and all other, fluorescence-based experiments are often affected by the properties of the fluorophores employed. Often the fluorescence properties of these fluorophores are influenced by their microenvironments. Fluorophores are known to sometimes interact with biological molecules, and this can have pronounced effects on the rotational mobility and photophysical properties of the dye. Misunderstanding the effect of these photophysical and rotational properties can lead to a misinterpretation of the obtained data. In this thesis, photophysical behaviors of various organic dyes were studied in the presence of deoxymononucleotides to examine more closely how interactions between fluorophores and DNA bases can affect fluorescent properties. Furthermore, the properties of cyanine dyes when bound to DNA and the effect of restricted rotation on FRET are presented in this thesis. This thesis involves studying fluorophore photophysics in various microenvironments and then expanding into the solution stability and dynamics of the DNA sliding clamps.
ContributorsRanjit, Suman (Author) / Levitus, Marcia (Thesis advisor) / Lindsay, Stuart (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2013
151944-Thumbnail Image.png
Description
The atomization of a liquid jet by a high speed cross-flowing gas has many applications such as gas turbines and augmentors. The mechanisms by which the liquid jet initially breaks up, however, are not well understood. Experimental studies suggest the dependence of spray properties on operating conditions and nozzle geom-

The atomization of a liquid jet by a high speed cross-flowing gas has many applications such as gas turbines and augmentors. The mechanisms by which the liquid jet initially breaks up, however, are not well understood. Experimental studies suggest the dependence of spray properties on operating conditions and nozzle geom- etry. Detailed numerical simulations can offer better understanding of the underlying physical mechanisms that lead to the breakup of the injected liquid jet. In this work, detailed numerical simulation results of turbulent liquid jets injected into turbulent gaseous cross flows for different density ratios is presented. A finite volume, balanced force fractional step flow solver to solve the Navier-Stokes equations is employed and coupled to a Refined Level Set Grid method to follow the phase interface. To enable the simulation of atomization of high density ratio fluids, we ensure discrete consistency between the solution of the conservative momentum equation and the level set based continuity equation by employing the Consistent Rescaled Momentum Transport (CRMT) method. The impact of different inflow jet boundary conditions on different jet properties including jet penetration is analyzed and results are compared to those obtained experimentally by Brown & McDonell(2006). In addition, instability analysis is performed to find the most dominant insta- bility mechanism that causes the liquid jet to breakup. Linear instability analysis is achieved using linear theories for Rayleigh-Taylor and Kelvin- Helmholtz instabilities and non-linear analysis is performed using our flow solver with different inflow jet boundary conditions.
ContributorsGhods, Sina (Author) / Herrmann, Marcus (Thesis advisor) / Squires, Kyle (Committee member) / Chen, Kangping (Committee member) / Huang, Huei-Ping (Committee member) / Tang, Wenbo (Committee member) / Arizona State University (Publisher)
Created2013
152007-Thumbnail Image.png
Description
The implications of a changing climate have a profound impact on human life, society, and policy making. The need for accurate climate prediction becomes increasingly important as we better understand these implications. Currently, the most widely used climate prediction relies on the synthesis of climate model simulations organized by the

The implications of a changing climate have a profound impact on human life, society, and policy making. The need for accurate climate prediction becomes increasingly important as we better understand these implications. Currently, the most widely used climate prediction relies on the synthesis of climate model simulations organized by the Coupled Model Intercomparison Project (CMIP); these simulations are ensemble-averaged to construct projections for the 21st century climate. However, a significant degree of bias and variability in the model simulations for the 20th century climate is well-known at both global and regional scales. Based on that insight, this study provides an alternative approach for constructing climate projections that incorporates knowledge of model bias. This approach is demonstrated to be a viable alternative which can be easily implemented by water resource managers for potentially more accurate projections. Tests of the new approach are provided on a global scale with an emphasis on semiarid regional studies for their particular vulnerability to water resource changes, using both the former CMIP Phase 3 (CMIP3) and current Phase 5 (CMIP5) model archives. This investigation is accompanied by a detailed analysis of the dynamical processes and water budget to understand the behaviors and sources of model biases. Sensitivity studies of selected CMIP5 models are also performed with an atmospheric component model by testing the relationship between climate change forcings and model simulated response. The information derived from each study is used to determine the progressive quality of coupled climate models in simulating the global water cycle by rigorously investigating sources of model bias related to the moisture budget. As such, the conclusions of this project are highly relevant to model development and potentially may be used to further improve climate projections.
ContributorsBaker, Noel C (Author) / Huang, Huei-Ping (Thesis advisor) / Trimble, Steve (Committee member) / Anderson, James (Committee member) / Clarke, Amanda (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2013