Matching Items (5)
Filtering by

Clear all filters

151501-Thumbnail Image.png
Description
Daily dairies and other intensive measurement methods are increasingly used to study the relationships between two time varying variables X and Y. These data are commonly analyzed using longitudinal multilevel or bivariate growth curve models that allow for random effects of intercept (and sometimes also slope) but which do not

Daily dairies and other intensive measurement methods are increasingly used to study the relationships between two time varying variables X and Y. These data are commonly analyzed using longitudinal multilevel or bivariate growth curve models that allow for random effects of intercept (and sometimes also slope) but which do not address the effects of weekly cycles in the data. Three Monte Carlo studies investigated the impact of omitting the weekly cycles in daily dairy data under the multilevel model framework. In cases where cycles existed in both the time-varying predictor series (X) and the time-varying outcome series (Y) but were ignored, the effects of the within- and between-person components of X on Y tended to be biased, as were their corresponding standard errors. The direction and magnitude of the bias depended on the phase difference between the cycles in the two series. In cases where cycles existed in only one series but were ignored, the standard errors of the regression coefficients for the within- and between-person components of X tended to be biased, and the direction and magnitude of bias depended on which series contained cyclical components.
ContributorsLiu, Yu (Author) / West, Stephen G. (Thesis advisor) / Enders, Craig K. (Committee member) / Reiser, Mark R. (Committee member) / Arizona State University (Publisher)
Created2013
156676-Thumbnail Image.png
Description
The current study investigated how multimedia pacing (learner-control versus system-paced) and presentation styles (visual-only versus audio/visual) impact learning physics concept material, mental effort, and self-efficacy. This 2X2 factorial study randomly assigned participants into one of four conditions that manipulated presentation style (visual-only versus audio/visual) and pacing of the content (system-paced

The current study investigated how multimedia pacing (learner-control versus system-paced) and presentation styles (visual-only versus audio/visual) impact learning physics concept material, mental effort, and self-efficacy. This 2X2 factorial study randomly assigned participants into one of four conditions that manipulated presentation style (visual-only versus audio/visual) and pacing of the content (system-paced versus learning-controlled). Participant's learning was measured by recording their retention of information and ability to transfer information. Measures of perceived difficulty (mental effort) and perceived ability (self-efficacy) were also obtained. No significant effects were observed in this study which doesn’t support the existence of either the modality or reverse modality effect at least in these noisier online learning environments. In addition, the hypothesis that their effects could be an artifact of experimental design could not be proven as the learner control condition did not yield any significant results.
ContributorsKrause, Tyler (Author) / Craig, Scotty D. (Thesis advisor) / Gray, Robert (Committee member) / Branaghan, Russell (Committee member) / Arizona State University (Publisher)
Created2018
155101-Thumbnail Image.png
Description
The purpose of this study was to investigate the impacts of three types of instructional presentation methods on learning, efficiency, cognitive load, and learner attitude. A total of 67 employees of a large southwestern university working in the field of research administration were randomly assigned to one of three

The purpose of this study was to investigate the impacts of three types of instructional presentation methods on learning, efficiency, cognitive load, and learner attitude. A total of 67 employees of a large southwestern university working in the field of research administration were randomly assigned to one of three conditions. Each condition presented instructional materials using a different method, namely dynamic integrated, dynamic non-integrated, or non-dynamic non-integrated. Participants completed a short survey, pre-test, cognitive load questions, learner attitude questions, and a post-test during their experience. The results reveal that users of the dynamic integrated condition treatment showed significant improvement in both learning and efficiency. The dynamic non-integrated participants had a faster mean time to complete an assigned task, however, they also had significantly lower average test scores. There were no other significant findings in terms of cognitive load or learner attitude. Limitations, implications and future studies are discussed.
ContributorsBrown, Andrew (Author) / Nelson, Brian (Thesis advisor) / Savenye, Wilhelmina (Committee member) / Atkinson, Robert (Committee member) / Arizona State University (Publisher)
Created2016
154939-Thumbnail Image.png
Description
The comparison of between- versus within-person relations addresses a central issue in psychological research regarding whether group-level relations among variables generalize to individual group members. Between- and within-person effects may differ in magnitude as well as direction, and contextual multilevel models can accommodate this difference. Contextual multilevel models have been

The comparison of between- versus within-person relations addresses a central issue in psychological research regarding whether group-level relations among variables generalize to individual group members. Between- and within-person effects may differ in magnitude as well as direction, and contextual multilevel models can accommodate this difference. Contextual multilevel models have been explicated mostly for cross-sectional data, but they can also be applied to longitudinal data where level-1 effects represent within-person relations and level-2 effects represent between-person relations. With longitudinal data, estimating the contextual effect allows direct evaluation of whether between-person and within-person effects differ. Furthermore, these models, unlike single-level models, permit individual differences by allowing within-person slopes to vary across individuals. This study examined the statistical performance of the contextual model with a random slope for longitudinal within-person fluctuation data.

A Monte Carlo simulation was used to generate data based on the contextual multilevel model, where sample size, effect size, and intraclass correlation (ICC) of the predictor variable were varied. The effects of simulation factors on parameter bias, parameter variability, and standard error accuracy were assessed. Parameter estimates were in general unbiased. Power to detect the slope variance and contextual effect was over 80% for most conditions, except some of the smaller sample size conditions. Type I error rates for the contextual effect were also high for some of the smaller sample size conditions. Conclusions and future directions are discussed.
ContributorsWurpts, Ingrid Carlson (Author) / Mackinnon, David P (Thesis advisor) / West, Stephen G. (Committee member) / Grimm, Kevin J. (Committee member) / Suk, Hye Won (Committee member) / Arizona State University (Publisher)
Created2016
156092-Thumbnail Image.png
Description
Guitar Hero III and similar games potentially offer a vehicle for improvement of musical rhythmic accuracy with training delivered in both visual and auditory formats and by use of its novel guitar-shaped interface; however, some theories regarding multimedia learning suggest sound is a possible source of extraneous cognitive load while

Guitar Hero III and similar games potentially offer a vehicle for improvement of musical rhythmic accuracy with training delivered in both visual and auditory formats and by use of its novel guitar-shaped interface; however, some theories regarding multimedia learning suggest sound is a possible source of extraneous cognitive load while playing so players may score higher with sound turned off. Also, existing studies have shown that differences in the physical format of interfaces affect learning outcomes. This study sought to determine whether (a) the game’s audio content affects rhythmic accuracy, and (b) the type of game controller used affects learning of rhythmic accuracy. One hundred participants were randomly assigned in approximately equal numbers (ns = 25) to the four cells of a 2x2 between-subjects design. The first variable was the audio content of the game with two levels: on or off. The second variable was the type of game controller: the standard guitar-style controller or tablet interface. Participants across all conditions completed a pre- and post-test with a system that required them to tap along with repeated rhythmic patterns on an electronic drum pad. Statistical evidence showed better outcomes with a tablet controller with respect to input time error, reduction of extra notes played, and reduction of missed notes; however, the guitar-style controller produced superior outcomes in terms of avoiding missed notes and was associated with higher satisfaction by participants. When audio was present better outcomes were achieved at multiple factor-levels of reduction of missed responses, but superior outcomes in input time error were seen without audio. There was no evidence to suggest an interaction between controller type and the presence or absence of audio.
ContributorsThomas, James William (Author) / Zuiker, Steven J (Thesis advisor) / Atkinson, Robert (Thesis advisor) / Savenye, Wilhelmina C (Committee member) / Arizona State University (Publisher)
Created2017