Matching Items (2)
Filtering by

Clear all filters

152647-Thumbnail Image.png
Description
We live in a world of rapidly changing technologies that bathe us in visual images and information, not only challenging us to find connections and make sense of what we are learning, but also allowing us to learn and to collaborate in new ways. Art educators are using one of

We live in a world of rapidly changing technologies that bathe us in visual images and information, not only challenging us to find connections and make sense of what we are learning, but also allowing us to learn and to collaborate in new ways. Art educators are using one of these new technologies, virtual worlds, to create educational environments and curricula. This study looks at how post-secondary art educators are using Second Life in their undergraduate and graduate level curricula and what perceived benefits, challenges, and unique learning experiences they feel this new educational venue offers. This study uses qualitative and participant observation methodologies, including qualitative interviews, observations, and collection of generated works, to look at the practices of six art educators teaching university level undergraduate and graduate courses. Data are compared internally between the participants and externally by correlating to current research. Art education in Second Life includes many curricula activities and strategies often seen in face-to-face classes, including writing reflections, essays, and papers, creating presentations and Power Points, conducting research, and creating art. Challenges include expense, student frustration and anxiety issues, and the transience of Second Life sites. Among the unique learning experiences are increased opportunities for field trips, student collaboration, access to guest speakers, and the ability to set up experiences not practical or possible in the real world. The experiences of these six art educators can be used as a guide for art educators just beginning exploration of virtual world education and encouragement when looking for new ways to teach that may increase our students' understanding and knowledge and their access and connections to others.
ContributorsSchlegel, Deborah (Author) / Stokrocki, Mary (Thesis advisor) / Erickson, Mary (Committee member) / Young, Bernard (Committee member) / Arizona State University (Publisher)
Created2014
153158-Thumbnail Image.png
Description
Stroke is a leading cause of disability with varying effects across stroke survivors necessitating comprehensive approaches to rehabilitation. Interactive neurorehabilitation (INR) systems represent promising technological solutions that can provide an array of sensing, feedback and analysis tools which hold the potential to maximize clinical therapy as well as extend therapy

Stroke is a leading cause of disability with varying effects across stroke survivors necessitating comprehensive approaches to rehabilitation. Interactive neurorehabilitation (INR) systems represent promising technological solutions that can provide an array of sensing, feedback and analysis tools which hold the potential to maximize clinical therapy as well as extend therapy to the home. Currently, there are a variety of approaches to INR design, which coupled with minimal large-scale clinical data, has led to a lack of cohesion in INR design. INR design presents an inherently complex space as these systems have multiple users including stroke survivors, therapists and designers, each with their own user experience needs. This dissertation proposes that comprehensive INR design, which can address this complex user space, requires and benefits from the application of interdisciplinary research that spans motor learning and interactive learning. A methodology for integrated and iterative design approaches to INR task experience, assessment, hardware, software and interactive training protocol design is proposed within the comprehensive example of design and implementation of a mixed reality rehabilitation system for minimally supervised environments. This system was tested with eight stroke survivors who showed promising results in both functional and movement quality improvement. The results of testing the system with stroke survivors as well as observing user experiences will be presented along with suggested improvements to the proposed design methodology. This integrative design methodology is proposed to have benefit for not only comprehensive INR design but also complex interactive system design in general.
ContributorsBaran, Michael (Author) / Rikakis, Thanassis (Thesis advisor) / Olson, Loren (Thesis advisor) / Wolf, Steven L. (Committee member) / Ingalls, Todd (Committee member) / Arizona State University (Publisher)
Created2014