Matching Items (22)
Filtering by

Clear all filters

151515-Thumbnail Image.png
Description
This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified

This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified technique results in significant improvement in velocity retrieval accuracy. These modifications include changes to innovation covariance portioning, covariance binning, and analysis increment calculation. It is observed that the modified technique is able to make retrievals with better accuracy, preserves local information better, and compares well with tower measurements. In order to study the error of representativeness and vector retrieval error, a lidar simulator was constructed. Using the lidar simulator a thorough sensitivity analysis of the lidar measurement process and vector retrieval is carried out. The error of representativeness as a function of scales of motion and sensitivity of vector retrieval to look angle is quantified. Using the modified OI technique, study of nocturnal flow in Owens' Valley, CA was carried out to identify and understand uncharacteristic events on the night of March 27th 2006. Observations from 1030 UTC to 1230 UTC (0230 hr local time to 0430 hr local time) on March 27 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) and other in-situ instrumentations are used to corroborate and complement these observations. The modified OI technique is used to identify uncharacteristic and extreme flow events at a wind development site. Estimates of turbulence and shear from this technique are compared to tower measurements. A formulation for equivalent wind speed in the presence of variations in wind speed and direction, combined with shear is developed and used to determine wind energy content in presence of turbulence.
ContributorsChoukulkar, Aditya (Author) / Calhoun, Ronald (Thesis advisor) / Mahalov, Alex (Committee member) / Kostelich, Eric (Committee member) / Huang, Huei-Ping (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
151575-Thumbnail Image.png
Description
A general continuum model for simulating the flow of ions in the salt baths that surround and fill excitable neurons is developed and presented. The ion densities and electric potential are computed using the drift-diffusion equations. In addition, a detailed model is given for handling the electrical dynamics on interior

A general continuum model for simulating the flow of ions in the salt baths that surround and fill excitable neurons is developed and presented. The ion densities and electric potential are computed using the drift-diffusion equations. In addition, a detailed model is given for handling the electrical dynamics on interior membrane boundaries, including a model for ion channels in the membranes that facilitate the transfer of ions in and out of cells. The model is applied to the triad synapse found in the outer plexiform layer of the retina in most species. Experimental evidence suggests the existence of a negative feedback pathway between horizontal cells and cone photoreceptors that modulates the flow of calcium ions into the synaptic terminals of cones. However, the underlying mechanism for this feedback is controversial and there are currently three competing hypotheses: the ephaptic hypothesis, the pH hypothesis and the GABA hypothesis. The goal of this work is to test some features of the ephaptic hypothesis using detailed simulations that employ rigorous numerical methods. The model is first applied in a simple rectangular geometry to demonstrate the effects of feedback for different extracellular gap widths. The model is then applied to a more complex and realistic geometry to demonstrate the existence of strictly electrical feedback, as predicted by the ephaptic hypothesis. Lastly, the effects of electrical feedback in regards to the behavior of the bipolar cell membrane potential is explored. Figures for the ion densities and electric potential are presented to verify key features of the model. The computed steady state IV curves for several cases are presented, which can be compared to experimental data. The results provide convincing evidence in favor of the ephaptic hypothesis since the existence of feedback that is strictly electrical in nature is shown, without any dependence on pH effects or chemical transmitters.
ContributorsJones, Jeremiah (Author) / Gardner, Carl (Committee member) / Baer, Steven (Committee member) / Crook, Sharon (Committee member) / Kostelich, Eric (Committee member) / Ringhofer, Christian (Committee member) / Arizona State University (Publisher)
Created2013
Description
It is possible in a properly controlled environment, such as industrial metrology, to make significant headway into the non-industrial constraints on image-based position measurement using the techniques of image registration and achieve repeatable feature measurements on the order of 0.3% of a pixel, or about an order of magnitude improvement

It is possible in a properly controlled environment, such as industrial metrology, to make significant headway into the non-industrial constraints on image-based position measurement using the techniques of image registration and achieve repeatable feature measurements on the order of 0.3% of a pixel, or about an order of magnitude improvement on conventional real-world performance. These measurements are then used as inputs for a model optimal, model agnostic, smoothing for calibration of a laser scribe and online tracking of velocimeter using video input. Using appropriate smooth interpolation to increase effective sample density can reduce uncertainty and improve estimates. Use of the proper negative offset of the template function has the result of creating a convolution with higher local curvature than either template of target function which allows improved center-finding. Using the Akaike Information Criterion with a smoothing spline function it is possible to perform a model-optimal smooth on scalar measurements without knowing the underlying model and to determine the function describing the uncertainty in that optimal smooth. An example of empiric derivation of the parameters for a rudimentary Kalman Filter from this is then provided, and tested. Using the techniques of Exploratory Data Analysis and the "Formulize" genetic algorithm tool to convert the spline models into more accessible analytic forms resulted in stable, properly generalized, KF with performance and simplicity that exceeds "textbook" implementations thereof. Validation of the measurement includes that, in analytic case, it led to arbitrary precision in measurement of feature; in reasonable test case using the methods proposed, a reasonable and consistent maximum error of around 0.3% the length of a pixel was achieved and in practice using pixels that were 700nm in size feature position was located to within ± 2 nm. Robust applicability is demonstrated by the measurement of indicator position for a King model 2-32-G-042 rotameter.
ContributorsMunroe, Michael R (Author) / Phelan, Patrick (Thesis advisor) / Kostelich, Eric (Committee member) / Mahalov, Alex (Committee member) / Arizona State University (Publisher)
Created2012
190964-Thumbnail Image.png
Description
Climate change is one of the most pressing issues affecting the world today. One of the impacts of climate change is on the transmission of mosquito-borne diseases (MBDs), such as West Nile Virus (WNV). Climate is known to influence vector and host demography as well as MBD transmission. This dissertation

Climate change is one of the most pressing issues affecting the world today. One of the impacts of climate change is on the transmission of mosquito-borne diseases (MBDs), such as West Nile Virus (WNV). Climate is known to influence vector and host demography as well as MBD transmission. This dissertation addresses the questions of how vector and host demography impact WNV dynamics, and how expected and likely climate change scenarios will affect demographic and epidemiological processes of WNV transmission. First, a data fusion method is developed that connects non-autonomous logistic model parameters to mosquito time series data. This method captures the inter-annual and intra-seasonal variation of mosquito populations within a geographical location. Next, a three-population WNV model between mosquito vectors, bird hosts, and human hosts with infection-age structure for the vector and bird host populations is introduced. A sensitivity analysis uncovers which parameters have the most influence on WNV outbreaks. Finally, the WNV model is extended to include the non-autonomous population model and temperature-dependent processes. Model parameterization using historical temperature and human WNV case data from the Greater Toronto Area (GTA) is conducted. Parameter fitting results are then used to analyze possible future WNV dynamics under two climate change scenarios. These results suggest that WNV risk for the GTA will substantially increase as temperature increases from climate change, even under the most conservative assumptions. This demonstrates the importance of ensuring that the warming of the planet is limited as much as possible.
ContributorsMancuso, Marina (Author) / Milner, Fabio A (Thesis advisor) / Kuang, Yang (Committee member) / Kostelich, Eric (Committee member) / Eikenberry, Steffen (Committee member) / Manore, Carrie (Committee member) / Arizona State University (Publisher)
Created2023
171849-Thumbnail Image.png
Description
This thesis focuses on the turbulent bluff body wakes in incompressible and compressible flows. An incompressible wake flow past an axisymmetric body of revolution at a diameter-based Reynolds number Re=5000 is investigated via a direct numerical simulation. It is followed by the development of a compressible solver using a split-form

This thesis focuses on the turbulent bluff body wakes in incompressible and compressible flows. An incompressible wake flow past an axisymmetric body of revolution at a diameter-based Reynolds number Re=5000 is investigated via a direct numerical simulation. It is followed by the development of a compressible solver using a split-form discontinuous Galerkin spectral element method framework with shock capturing. In the study on incompressible wake flows, three dominant coherent vortical motions are identified in the wake: the vortex shedding motion with the frequency of St=0.27, the bubble pumping motion with St=0.02, and the very-low-frequency (VLF) motion originated in the very near wake of the body with the frequencies St=0.002 and 0.005. The very-low-frequency motion is associated with a slow precession of the wake barycenter. The vortex shedding pattern is demonstrated to follow a reflectional symmetry breaking mode, with the detachment location rotating continuously and making a full circle over one vortex shedding period. The VLF radial motion with St=0.005 originates as m = 1 mode, but later transitions into m = 2 mode in the intermediate wake. Proper orthogonaldecomposition (POD) and dynamic mode decomposition (DMD) are further performed to analyze the spatial structure associated with the dominant coherent motions. Results of the POD and DMD analysis are consistent with the results of the azimuthal Fourier analysis. To extend the current incompressible code to be able to solve compressible flows, a computational methodology is developed using a high-order approximation for the compressible Navier-Stokes equations with discontinuities. The methodology is based on a split discretization framework with a summation-by-part operator. An entropy viscosity method and a subcell finite volume method are implemented to capture discontinuities. The developed high-order split-form with shock-capturing methodology is subject to a series of evaluation on cases from subsonic to hypersonic, from one-dimensional to three dimensional. The Taylor-Green vortex case and the supersonic sphere wake case show the capability to handle three-dimensional turbulent flows without and with the presence of shocks. It is also shown that higher-order approximations yield smaller errors than lower-order approximations, for the same number of total degrees of freedom.
ContributorsZhang, Fengrui (Author) / Peet, Yulia (Thesis advisor) / Kostelich, Eric (Committee member) / Kim, Jeonglae (Committee member) / Hermann, Marcus (Committee member) / Adrian, Ronald (Committee member) / Arizona State University (Publisher)
Created2022
168448-Thumbnail Image.png
Description
High-dimensional systems are difficult to model and predict. The underlying mechanisms of such systems are too complex to be fully understood with limited theoretical knowledge and/or physical measurements. Nevertheless, redcued-order models have been widely used to study high-dimensional systems, because they are practical and efficient to develop and implement. Although

High-dimensional systems are difficult to model and predict. The underlying mechanisms of such systems are too complex to be fully understood with limited theoretical knowledge and/or physical measurements. Nevertheless, redcued-order models have been widely used to study high-dimensional systems, because they are practical and efficient to develop and implement. Although model errors (biases) are inevitable for reduced-order models, these models can still be proven useful to develop real-world applications. Evaluation and validation for idealized models are indispensable to serve the mission of developing useful applications. Data assimilation and uncertainty quantification can provide a way to assess the performance of a reduced-order model. Real data and a dynamical model are combined together in a data assimilation framework to generate corrected model forecasts of a system. Uncertainties in model forecasts and observations are also quantified in a data assimilation cycle to provide optimal updates that are representative of the real dynamics. In this research, data assimilation is applied to assess the performance of two reduced-order models. The first model is developed for predicting prostate cancer treatment response under intermittent androgen suppression therapy. A sequential data assimilation scheme, the ensemble Kalman filter (EnKF), is used to quantify uncertainties in model predictions using clinical data of individual patients provided by Vancouver Prostate Center. The second model is developed to study what causes the changes of the state of stratospheric polar vortex. Two data assimilation schemes: EnKF and ES-MDA (ensemble smoother with multiple data assimilation), are used to validate the qualitative properties of the model using ECMWF (European Center for Medium-Range Weather Forecasts) reanalysis data. In both studies, the reduced-order model is able to reproduce the data patterns and provide insights to understand the underlying mechanism. However, significant model errors are also diagnosed for both models from the results of data assimilation schemes, which suggests specific improvements of the reduced-order models.
ContributorsWu, Zhimin (Author) / Kostelich, Eric (Thesis advisor) / Moustaoui, Mohamed (Thesis advisor) / Jones, Chris (Committee member) / Espanol, Malena (Committee member) / Platte, Rodrigo (Committee member) / Arizona State University (Publisher)
Created2021
161972-Thumbnail Image.png
Description
Synthetic biology (SB) has become an important field of science focusing on designing and engineering new biological parts and systems, or re-designing existing biological systems for useful purposes. The dramatic growth of SB throughout the past two decades has not only provided us numerous achievements, but also brought us more

Synthetic biology (SB) has become an important field of science focusing on designing and engineering new biological parts and systems, or re-designing existing biological systems for useful purposes. The dramatic growth of SB throughout the past two decades has not only provided us numerous achievements, but also brought us more timely and underexplored problems. In SB's entire history, mathematical modeling has always been an indispensable approach to predict the experimental outcomes, improve experimental design and obtain mechanism-understanding of the biological systems. \textit{Escherichia coli} (\textit{E. coli}) is one of the most important experimental platforms, its growth dynamics is the major research objective in this dissertation. Chapter 2 employs a reaction-diffusion model to predict the \textit{E. coli} colony growth on a semi-solid agar plate under multiple controls. In that chapter, a density-dependent diffusion model with non-monotonic growth to capture the colony's non-linear growth profile is introduced. Findings of the new model to experimental data are compared and contrasted with those from other proposed models. In addition, the cross-sectional profile of the colony are computed and compared with experimental data. \textit{E. coli} colony is also used to perform spatial patterns driven by designed gene circuits. In Chapter 3, a gene circuit (MINPAC) and its corresponding pattern formation results are presented. Specifically, a series of partial differential equation (PDE) models are developed to describe the pattern formation driven by the MINPAC circuit. Model simulations of the patterns based on different experimental conditions and numerical analysis of the models to obtain a deeper understanding of the mechanisms are performed and discussed. Mathematical analysis of the simplified models, including traveling wave analysis and local stability analysis, is also presented and used to explore the control strategies of the pattern formation. The interaction between the gene circuit and the host \textit{E. coli} may be crucial and even greatly affect the experimental outcomes. Chapter 4 focuses on the growth feedback between the circuit and the host cell under different nutrient conditions. Two ordinary differential equation (ODE) models are developed to describe such feedback with nutrient variation. Preliminary results on data fitting using both two models and the model dynamical analysis are included.
ContributorsHe, Changhan (Author) / Kuang, Yang (Thesis advisor) / Wang, Xiao (Committee member) / Kostelich, Eric (Committee member) / Tian, Xiaojun (Committee member) / Gumel, Abba (Committee member) / Arizona State University (Publisher)
Created2021
187669-Thumbnail Image.png
Description
Advancements to a dual scale Large Eddy Simulation (LES) modeling approach for immiscible turbulent phase interfaces are presented. In the dual scale LES approach, a high resolution auxiliary grid, used to capture a fully resolved interface geometry realization, is linked to an LES grid that solves the filtered Navier-Stokes equations.

Advancements to a dual scale Large Eddy Simulation (LES) modeling approach for immiscible turbulent phase interfaces are presented. In the dual scale LES approach, a high resolution auxiliary grid, used to capture a fully resolved interface geometry realization, is linked to an LES grid that solves the filtered Navier-Stokes equations. Exact closure of the sub-filter interface terms is provided by explicitly filtering the fully resolved quantities from the auxiliary grid. Reconstructing a fully resolved velocity field to advance the phase interface requires modeling several sub-filter effects, including shear and accelerational instabilities and phase change. Two sub-filter models were developed to generate these sub-filter hydrodynamic instabilities: an Orr-Sommerfeld model and a Volume-of-Fluid (VoF) vortex sheet method. The Orr-Sommerfeld sub-filter model was found to be incompatible with the dual scale approach, since it is unable to generate interface rollup and a process to separate filtered and sub-filter scales could not be established. A novel VoF vortex sheet method was therefore proposed, since prior vortex methods have demonstrated interface rollup and following the LES methodology, the vortex sheet strength could be decomposed into its filtered and sub-filter components. In the development of the VoF vortex sheet method, it was tested with a variety of classical hydrodynamic instability problems, compared against prior work and linear theory, and verified using Direct Numerical Simulations (DNS). An LES consistent approach to coupling the VoF vortex sheet with the LES filtered equations is presented and compared against DNS. Finally, a sub-filter phase change model is proposed and assessed in the dual scale LES framework with an evaporating interface subjected to decaying homogeneous isotropic turbulence. Results are compared against DNS and the interplay between surface tension forces and evaporation are discussed.
ContributorsGoodrich, Austin Chase (Author) / Herrmann, Marcus (Thesis advisor) / Dahm, Werner (Committee member) / Kim, Jeonglae (Committee member) / Huang, Huei-Ping (Committee member) / Kostelich, Eric (Committee member) / Arizona State University (Publisher)
Created2023
187415-Thumbnail Image.png
Description
A pneumonia-like illness emerged late in 2019 (coined COVID-19), caused by SARSCoV-2, causing a devastating global pandemic on a scale never before seen sincethe 1918/1919 influenza pandemic. This dissertation contributes in providing deeper qualitative insights into the transmission dynamics and control of the disease in the United States. A basic mathematical model,

A pneumonia-like illness emerged late in 2019 (coined COVID-19), caused by SARSCoV-2, causing a devastating global pandemic on a scale never before seen sincethe 1918/1919 influenza pandemic. This dissertation contributes in providing deeper qualitative insights into the transmission dynamics and control of the disease in the United States. A basic mathematical model, which incorporates the key pertinent epidemiological features of SARS-CoV-2 and fitted using observed COVID-19 data, was designed and used to assess the population-level impacts of vaccination and face mask usage in mitigating the burden of the pandemic in the United States. Conditions for the existence and asymptotic stability of the various equilibria of the model were derived. The model was shown to undergo a vaccine-induced backward bifurcation when the associated reproduction number is less than one. Conditions for achieving vaccine-derived herd immunity were derived for three of the four FDA-approved vaccines (namely Pfizer, Moderna and Johnson & Johnson vaccine), and the vaccination coverage level needed to achieve it decreases with increasing coverage of moderately and highly-effective face masks. It was also shown that using face masks as a singular intervention strategy could lead to the elimination of the pandemic if moderate or highly-effective masks are prioritized and pandemic elimination prospects are greatly enhanced if the vaccination program is combined with a face mask use strategy that emphasizes the use of moderate to highly-effective masks with at least moderate coverage. The model was extended in Chapter 3 to allow for the assessment of the impacts of waning and boosting of vaccine-derived and natural immunity against the BA.1 Omicron variant of SARS-CoV-2. It was shown that vaccine-derived herd immunity can be achieved in the United States via a vaccination-boosting strategy which entails fully vaccinating at least 72% of the susceptible populace. Boosting of vaccine-derived immunity was shown to be more beneficial than boosting of natural immunity. Overall, this study showed that the prospects of the elimination of the pandemic in the United States were highly promising using the two intervention measures.
ContributorsSafdar, Salman (Author) / Gumel, Abba (Thesis advisor) / Kostelich, Eric (Committee member) / Kang, Yun (Committee member) / Fricks, John (Committee member) / Espanol, Malena (Committee member) / Arizona State University (Publisher)
Created2023
157651-Thumbnail Image.png
Description
This dissertation develops a second order accurate approximation to the magnetic resonance (MR) signal model used in the PARSE (Parameter Assessment by Retrieval from Single Encoding) method to recover information about the reciprocal of the spin-spin relaxation time function (R2*) and frequency offset function (w) in addition to the typical

This dissertation develops a second order accurate approximation to the magnetic resonance (MR) signal model used in the PARSE (Parameter Assessment by Retrieval from Single Encoding) method to recover information about the reciprocal of the spin-spin relaxation time function (R2*) and frequency offset function (w) in addition to the typical steady-state transverse magnetization (M) from single-shot magnetic resonance imaging (MRI) scans. Sparse regularization on an approximation to the edge map is used to solve the associated inverse problem. Several studies are carried out for both one- and two-dimensional test problems, including comparisons to the first order approximation method, as well as the first order approximation method with joint sparsity across multiple time windows enforced. The second order accurate model provides increased accuracy while reducing the amount of data required to reconstruct an image when compared to piecewise constant in time models. A key component of the proposed technique is the use of fast transforms for the forward evaluation. It is determined that the second order model is capable of providing accurate single-shot MRI reconstructions, but requires an adequate coverage of k-space to do so. Alternative data sampling schemes are investigated in an attempt to improve reconstruction with single-shot data, as current trajectories do not provide ideal k-space coverage for the proposed method.
ContributorsJesse, Aaron Mitchel (Author) / Platte, Rodrigo (Thesis advisor) / Gelb, Anne (Committee member) / Kostelich, Eric (Committee member) / Mittelmann, Hans (Committee member) / Moustaoui, Mohamed (Committee member) / Arizona State University (Publisher)
Created2019