Matching Items (23)
Filtering by

Clear all filters

151304-Thumbnail Image.png
Description
Food system and health characteristics were evaluated across the last Waorani hunter-gatherer group in Amazonian Ecuador and a remote neighboring Kichwa indigenous subsistence agriculture community. Hunter-gatherer food systems like the Waorani foragers may not only be nutritionally, but also pharmaceutically beneficial because of high dietary intake of varied plant phytochemical

Food system and health characteristics were evaluated across the last Waorani hunter-gatherer group in Amazonian Ecuador and a remote neighboring Kichwa indigenous subsistence agriculture community. Hunter-gatherer food systems like the Waorani foragers may not only be nutritionally, but also pharmaceutically beneficial because of high dietary intake of varied plant phytochemical compounds. A modern diet that reduces these dietary plant defense phytochemicals below levels typical in human evolutionary history may leave humans vulnerable to diseases that were controlled through a foraging diet. Few studies consider the health impact of the recent drastic reduction of plant phytochemical content in the modern global food system, which has eliminated essential components of food because they are not considered "nutrients". The antimicrobial and anti-inflammatory nature of the food system may not only regulate infectious pathogens and inflammatory disease, but also support beneficial microbes in human hosts, reducing vulnerability to chronic diseases. Waorani foragers seem immune to certain infections with very low rates of chronic disease. Does returning to certain characteristics of a foraging food system begin to restore the human body microbe balance and inflammatory response to evolutionary norms, and if so, what implication does this have for the treatment of disease? Several years of data on dietary and health differences across the foragers and the farmers was gathered. There were major differences in health outcomes across the board. In the Waorani forager group there were no signs of infection in serious wounds such as 3rd degree burns and spear wounds. The foragers had one-degree lower body temperature than the farmers. The Waorani had an absence of signs of chronic diseases including vision and blood pressure that did not change markedly with age while Kichwa farmers suffered from both chronic diseases and physiological indicators of aging. In the Waorani forager population, there was an absence of many common regional infectious diseases, from helminthes to staphylococcus. Study design helped control for confounders (exercise, environment, genetic factors, non-phytochemical dietary intake). This study provides evidence of the major role total phytochemical dietary intake plays in human health, often not considered by policymakers and nutritional and agricultural scientists.
ContributorsLondon, Douglas (Author) / Tsuda, Takeyuki (Thesis advisor) / Beezhold, Bonnie L (Committee member) / Hruschka, Daniel (Committee member) / Eder, James (Committee member) / Arizona State University (Publisher)
Created2012
150552-Thumbnail Image.png
Description
This dissertation is intended to tie together a body of work which utilizes a variety of methods to study applied mathematical models involving heterogeneity often omitted with classical modeling techniques. I posit three cogent classifications of heterogeneity: physiological, behavioral, and local (specifically connectivity in this work). I consider physiological heterogeneity

This dissertation is intended to tie together a body of work which utilizes a variety of methods to study applied mathematical models involving heterogeneity often omitted with classical modeling techniques. I posit three cogent classifications of heterogeneity: physiological, behavioral, and local (specifically connectivity in this work). I consider physiological heterogeneity using the method of transport equations to study heterogeneous susceptibility to diseases in open populations (those with births and deaths). I then present three separate models of behavioral heterogeneity. An SIS/SAS model of gonorrhea transmission in a population of highly active men-who-have-sex-with-men (MSM) is presented to study the impact of safe behavior (prevention and self-awareness) on the prevalence of this endemic disease. Behavior is modeled in this examples via static parameters describing consistent condom use and frequency of STD testing. In an example of behavioral heterogeneity, in the absence of underlying dynamics, I present a generalization to ``test theory without an answer key" (also known as cultural consensus modeling or CCM). CCM is commonly used to study the distribution of cultural knowledge within a population. The generalized framework presented allows for selecting the best model among various extensions of CCM: multiple subcultures, estimating the degree to which individuals guess yes, and making competence homogenous in the population. This permits model selection based on the principle of information criteria. The third behaviorally heterogeneous model studies adaptive behavioral response based on epidemiological-economic theory within an $SIR$ epidemic setting. Theorems used to analyze the stability of such models with a generalized, non-linear incidence structure are adapted and applied to the case of standard incidence and adaptive incidence. As an example of study in spatial heterogeneity I provide an explicit solution to a generalization of the continuous time approximation of the Albert-Barabasi scale-free network algorithm. The solution is found by recursively solving the differential equations via integrating factors, identifying a pattern for the coefficients and then proving this observed pattern is consistent using induction. An application to disease dynamics on such evolving structures is then studied.
ContributorsMorin, Benjamin (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Hiebeler, David (Thesis advisor) / Hruschka, Daniel (Committee member) / Suslov, Sergei (Committee member) / Arizona State University (Publisher)
Created2012
171906-Thumbnail Image.png
Description
Infrastructure systems are facing non-stationary challenges that stem from climate change and the increasingly complex interactions between the social, ecological, and technological systems (SETSs). It is crucial for transportation infrastructures—which enable residents to access opportunities and foster prosperity, quality of life, and social connections—to be resilient under these non-stationary challenges.

Infrastructure systems are facing non-stationary challenges that stem from climate change and the increasingly complex interactions between the social, ecological, and technological systems (SETSs). It is crucial for transportation infrastructures—which enable residents to access opportunities and foster prosperity, quality of life, and social connections—to be resilient under these non-stationary challenges. Vulnerability assessment (VA) examines the potential consequences a system is likely to experience due to exposure to perturbation or stressors and lack of the capacity to adapt. Post-fire debris flow and heat represent particularly challenging problems for infrastructure and users in the arid U.S. West. Post-fire debris flow, which is manifested with heat and drought, produces powerful runoff threatening physical transportation infrastructures. And heat waves have devastating health effects on transportation infrastructure users, including increased mortality rates. VA anticipates the potential consequences of these perturbations and enables infrastructure stakeholders to improve the system's resilience. The current transportation climate VA—which only considers a single direct climate stressor on the infrastructure—falls short of addressing the wildfire and heat challenges. This work proposes advanced transportation climate VA methods to address the complex and multiple climate stressors and the vulnerability of infrastructure users. Two specific regions were chosen to carry out the progressive transportation climate VA: 1) the California transportation networks’ vulnerability to post-fire debris flows, and 2) the transportation infrastructure user’s vulnerability to heat exposure in Phoenix.
ContributorsLi, Rui (Author) / Chester, Mikhail V. (Thesis advisor) / Middel, Ariane (Committee member) / Hondula, David M. (Committee member) / Pendyala, Ram (Committee member) / Arizona State University (Publisher)
Created2022
189337-Thumbnail Image.png
Description
Social norms are unwritten behavioral codes. They direct individual behaviors, facilitate interpersonal coordination and cooperation, and lead to variation among human populations. Understanding how norms are maintained and how they change is critical for understanding human evolutionary psychology, social organization, and cultural change. This dissertation uses a mathematical model and

Social norms are unwritten behavioral codes. They direct individual behaviors, facilitate interpersonal coordination and cooperation, and lead to variation among human populations. Understanding how norms are maintained and how they change is critical for understanding human evolutionary psychology, social organization, and cultural change. This dissertation uses a mathematical model and a field study to answer two questions: First, what factors determine the content and dynamics of a social norm? Second, how do people make decisions in a normative context? The mathematical model finds that contrary to the popular belief that even arbitrary or deleterious social norms can be maintained once established because deviants suffer coordination failures and social sanctions, norms with continuously varying options cannot be maintained by the pressure to do what others do. Instead, continuous norms evolve to the optimum determined by environmental pressure, individual preferences, or cognitive processes. Therefore, the content of norms across human societies may be less historically constrained than previously assumed. The field study shows that unlike what rational choice theory predicts, people in a small-scale subsistence society do not calculate the ecological and social payoffs of different behaviors in a normative context, even when they have the information to do so. Instead, they rely heavily on social information about what others do. This decision-making algorithm, together with mental categorization that ignores small deviations, and cognitive biases that favor the division prescribed by the norm, maintain an ecologically inefficient and widely disliked cooperative surplus division norm in a Derung village, Dizhengdang, in Yunnan, China.
ContributorsYan, Minhua (Author) / Boyd, Robert (Thesis advisor) / Mathew, Sarah (Thesis advisor) / Hruschka, Daniel (Committee member) / Arizona State University (Publisher)
Created2023
168620-Thumbnail Image.png
Description
Contact tracing was deployed widely during the COVID-19 pandemic to attempt to stop the spread of SARS Co-V-2. This dissertation investigates the research on contact tracing from a scientometric perspective and looks qualitatively at how case investigators and contact tracers conducted public health practice during the pandemic. Through

Contact tracing was deployed widely during the COVID-19 pandemic to attempt to stop the spread of SARS Co-V-2. This dissertation investigates the research on contact tracing from a scientometric perspective and looks qualitatively at how case investigators and contact tracers conducted public health practice during the pandemic. Through approaching the public health practice of contact tracing from both a broad, top-down angle, and an on the ground experiential approach, this dissertation provides insight into the issues facing contact tracing as a public health tool.
ContributorsWhite, Alexandra C. (Author) / Jehn, Megan (Thesis advisor) / Hruschka, Daniel (Committee member) / Gaughan, Monica (Committee member) / Arizona State University (Publisher)
Created2022
161987-Thumbnail Image.png
Description
Machine learning (ML) and deep learning (DL) has become an intrinsic part of multiple fields. The ability to solve complex problems makes machine learning a panacea. In the last few years, there has been an explosion of data generation, which has greatly improvised machine learning models. But this comes with

Machine learning (ML) and deep learning (DL) has become an intrinsic part of multiple fields. The ability to solve complex problems makes machine learning a panacea. In the last few years, there has been an explosion of data generation, which has greatly improvised machine learning models. But this comes with a cost of high computation, which invariably increases power usage and cost of the hardware. In this thesis we explore applications of ML techniques, applied to two completely different fields - arts, media and theater and urban climate research using low-cost and low-powered edge devices. The multi-modal chatbot uses different machine learning techniques: natural language processing (NLP) and computer vision (CV) to understand inputs of the user and accordingly perform in the play and interact with the audience. This system is also equipped with other interactive hardware setups like movable LED systems, together they provide an experiential theatrical play tailored to each user. I will discuss how I used edge devices to achieve this AI system which has created a new genre in theatrical play. I will then discuss MaRTiny, which is an AI-based bio-meteorological system that calculates mean radiant temperature (MRT), which is an important parameter for urban climate research. It is also equipped with a vision system that performs different machine learning tasks like pedestrian and shade detection. The entire system costs around $200 which can potentially replace the existing setup worth $20,000. I will further discuss how I overcame the inaccuracies in MRT value caused by the system, using machine learning methods. These projects although belonging to two very different fields, are implemented using edge devices and use similar ML techniques. In this thesis I will detail out different techniques that are shared between these two projects and how they can be used in several other applications using edge devices.
ContributorsKulkarni, Karthik Kashinath (Author) / Jayasuriya, Suren (Thesis advisor) / Middel, Ariane (Thesis advisor) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2021
187803-Thumbnail Image.png
Description
Latest estimates show that roughly 188 individuals in the United States die everyday due to an opioid-related overdose. This dissertation explores three avenues for mitigating opioid use disorder (OUD) and the opioid epidemic in the United States (1.) How can researchers and public health professionals identify areas most in need of treatment for

Latest estimates show that roughly 188 individuals in the United States die everyday due to an opioid-related overdose. This dissertation explores three avenues for mitigating opioid use disorder (OUD) and the opioid epidemic in the United States (1.) How can researchers and public health professionals identify areas most in need of treatment for OUD in an easy-to-use and publicly accessible interface?; (2.) What do practitioners see as opportunities for reducing barriers to treatment?; and (3.) Why do differences in opioid mortality exist between demographic groups? To address question one, I developed an interactive web-based to assist in identifying those counties with the greatest unmet need of medically assisted treatment (MAT). To answer question two, I conducted a study of stakeholders (medical providers, peer support specialists, public health practitioners, etc.) in four New Mexico counties with high unmet need of MAT. to identify cultural and structural barriers to MAT provision in underserved areas as well as opportunities for improving access. To answer the third question. I conducted a systematic review of peer-reviewed literature and government reports to identify how previous research accounts for race/ethnic and sex disparities in opioid-related mortality. While many opioid mortality studies show demographic differences, little is known about why they exist. According to the findings of this systematic review, research needs to go beyond identifying demographic differences in opioid-related mortality to understand the reasons for those differences to reduce these inequities.
ContributorsDrake, Alexandria (Author) / Hruschka, Daniel (Thesis advisor) / Jehn, Megan (Committee member) / Scott, Mary Alice (Committee member) / Arizona State University (Publisher)
Created2023
187639-Thumbnail Image.png
Description
Cities globally are experiencing substantial warming due to ongoing urbanization and climate change. However, existing efforts to mitigate urban heat focus mainly on new technologies, exacerbate social injustices, and ignore the need for a sustainability lens that considers environmental, social, and economic perspectives. Heat in urban areas is amplified and

Cities globally are experiencing substantial warming due to ongoing urbanization and climate change. However, existing efforts to mitigate urban heat focus mainly on new technologies, exacerbate social injustices, and ignore the need for a sustainability lens that considers environmental, social, and economic perspectives. Heat in urban areas is amplified and urgently needs to be considered as a critical sustainability issue that crosses disciplinary and sectoral (traditional) boundaries. The missing urgency is concerning because urban overheating is a multi-faceted threat to the well-being and performance of individuals as well as the energy efficiency and economy of cities. Urban heat consequences require transformation in ways of thinking by involving the best available knowledge engaging scientists, policymakers, and communities. To do so, effective heat mitigation planning requires a considerable amount of diverse knowledge sources, yet urban planners face multiple barriers to effective heat mitigation, including a lack of usable, policy-relevant science and governance structures. To address these issues, transdisciplinary approaches, such as co-production via partnerships and the creation of usable, policy-relevant science, are necessary to allow for sustainable and equitable heat mitigation that allow cities to work toward multiple Sustainable Development Goals (SDGs) using a systems approach. This dissertation presents three studies that contribute to a sustainability lens on urban heat, improve the holistic and multi-perspective understanding of heat mitigation strategies, provide contextual guidance for reflective pavement as a heat mitigation strategy, and evaluate a multilateral, sustainability-oriented, co-production partnership to foster heat resilience equitably in cities. Results show that science and city practice communicate differently about heat mitigation strategies while both avoid to communicate disservices and trade-offs. Additionally, performance evaluation of heat mitigation strategies for decision-making needs to consider multiple heat metrics, people, and background climate. Lastly, the partnership between science, city practice, and community needs to be evaluated to be accountable and provide a pathway of growth for all partners. The outcomes of this dissertation advance research and awareness of urban heat for science, practice, and community, and provide guidance to improve holistic and sustainable decision-making in cities and partnerships to address SDGs around urban heat.
ContributorsSchneider, Florian Arwed (Author) / Middel, Ariane (Thesis advisor) / Vanos, Jennifer K (Committee member) / Withycombe Keeler, Lauren (Committee member) / Arizona State University (Publisher)
Created2023
187347-Thumbnail Image.png
Description
Previous work suggests that lower-income individuals are more likely to engage in mutual aid as a means to manage risk, giving rise to a psychology that is other-oriented, including an empathetic disposition and a proclivity to help people in need. While no study has directly investigated whether helping in times

Previous work suggests that lower-income individuals are more likely to engage in mutual aid as a means to manage risk, giving rise to a psychology that is other-oriented, including an empathetic disposition and a proclivity to help people in need. While no study has directly investigated whether helping in times of need increases dispositional empathic concern over time, this assumption is deep-seated among social psychologists. Employing a two-year longitudinal survey of US adults (N = 915), I show that people who experience more needs report helping others when in need a greater number of times, in turn leading to a small but positive increase in their empathetic disposition. This study also identifies the types of needs that elicit empathic concern (i.e., those that arise from unpredictable sources of risk), and shows why cultivating an empathetic disposition is likely to pay off in the long run: those who provide help are more likely to receive help during future times of need. Moreover, this study identifies the types of targets for whom providing help might cultivate an empathetic disposition: those with whom people are likely to share lower interdependence. While previous theoretical frameworks posit that empathic concern selectively directs investment towards interdependent others, providing help to non-interdependent targets might allow people to build positive interdependence with prospective risk pooling partners. Cultivating an empathetic disposition and building interdependence with prospective risk pooling partners can allow people to manage needs that arise from unpredictable sources of risk.
ContributorsGuevara Beltran, Diego (Author) / Aktipis, Athena (Thesis advisor) / Hruschka, Daniel (Committee member) / Kenrick, Douglas (Committee member) / Shiota, Michelle (Committee member) / Arizona State University (Publisher)
Created2023
187355-Thumbnail Image.png
Description
Extreme heat and its human impacts are significant public health challenges that disproportionately affect certain populations. Often, people with the least resources to cope with the heat also live in the hottest regions of cities. Previous heat vulnerability research has predominantly been conducted at a coarse geographic scale, yet translating

Extreme heat and its human impacts are significant public health challenges that disproportionately affect certain populations. Often, people with the least resources to cope with the heat also live in the hottest regions of cities. Previous heat vulnerability research has predominantly been conducted at a coarse geographic scale, yet translating relationships measured at aggregated scales to the individual level can result in ecological fallacy. Prior work has also primarily studied the most severe health outcomes: hospitalization/emergency care and mortality. It is likely that magnitudes more people are experiencing negative health impacts from heat that do not necessarily result in medical care. Such less severe impacts are under-researched in the literature.This dissertation addresses these knowledge gaps by identifying how social characteristics and physical measurements of heat at the individual and household level act independently and in concert to influence human heat-related outcomes, especially less severe outcomes. In the first paper, meta-analysis was used to quantify the summary effects of vulnerability indicators on incidence of heat-related illness. More proximal vulnerability indicators (e.g., residential air conditioning use, indoor heat exposure, etc.) tended to have the strongest impact on odds of experiencing heat-related illness than more distal indicators. In the next paper, indoor air temperature observations were related to the social characteristics of the residents. The strongest predictor of indoor air temperature was the residents’ ideal thermally comfortable temperature, despite affordability. In the final paper, fine scale biometeorological observations of the outdoor thermal environment near residents’ homes were linked to their experience with heat-related illness. The outdoor thermal environment appeared to have a stronger, more consistent impact on heat-related illness among households in a lower income neighborhood compared to a higher income one. These findings affirm the value of employing residential heat mitigation solutions at the individual and household scale, indoors and outdoors. Across all chapters, the indoor thermal environment, and the ability to modify it, had a clear impact on residents’ comfort and health. Solutions that target the most proximal causal factors of heat-related illness will likely have the greatest impact on reducing the burden of heat on human health and well-being.
ContributorsWright, Mary K (Author) / Hondula, David M (Thesis advisor) / Larson, Kelli L (Committee member) / Middel, Ariane (Committee member) / Arizona State University (Publisher)
Created2023