Matching Items (188)
Filtering by

Clear all filters

149998-Thumbnail Image.png
Description
As the 3rd generation solar cell, quantum dot solar cells are expected to outperform the first 2 generations with higher efficiency and lower manufacture cost. Currently the main problems for QD cells are the low conversion efficiency and stability. This work is trying to improve the reliability as well as

As the 3rd generation solar cell, quantum dot solar cells are expected to outperform the first 2 generations with higher efficiency and lower manufacture cost. Currently the main problems for QD cells are the low conversion efficiency and stability. This work is trying to improve the reliability as well as the device performance by inserting an interlayer between the metal cathode and the active layer. Titanium oxide and a novel nitrogen doped titanium oxide were compared and TiOxNy capped device shown a superior performance and stability to TiOx capped one. A unique light anneal effect on the interfacial layer was discovered first time and proved to be the trigger of the enhancement of both device reliability and efficiency. The efficiency was improved by 300% and the device can retain 73.1% of the efficiency with TiOxNy when normal device completely failed after kept for long time. Photoluminescence indicted an increased charge disassociation rate at TiOxNy interface. External quantum efficiency measurement also inferred a significant performance enhancement in TiOxNy capped device, which resulted in a higher photocurrent. X-ray photoelectron spectrometry was performed to explain the impact of light doping on optical band gap. Atomic force microscopy illustrated the effect of light anneal on quantum dot polymer surface. The particle size is increased and the surface composition is changed after irradiation. The mechanism for performance improvement via a TiOx based interlayer was discussed based on a trap filling model. Then Tunneling AFM was performed to further confirm the reliability of interlayer capped organic photovoltaic devices. As a powerful tool based on SPM technique, tunneling AFM was able to explain the reason for low efficiency in non-capped inverted organic photovoltaic devices. The local injection properties as well as the correspondent topography were compared in organic solar cells with or without TiOx interlayer. The current-voltage characteristics were also tested at a single interested point. A severe short-circuit was discovered in non capped devices and a slight reverse bias leakage current was also revealed in TiOx capped device though tunneling AFM results. The failure reason for low stability in normal devices was also discussed comparing to capped devices.
ContributorsYu, Jialin (Author) / Jabbour, Ghassan E. (Thesis advisor) / Alford, Terry L. (Thesis advisor) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2011
Description
The focus of this study was the first Serbian opera, Na Uranku (At Dawn). It was written by Stanislav Binièki (1872-1942) and was first performed in 1903 at the National Theatre in Belgrade. There were two objectives of this project: (1) a live concert performance of the opera, which produced

The focus of this study was the first Serbian opera, Na Uranku (At Dawn). It was written by Stanislav Binièki (1872-1942) and was first performed in 1903 at the National Theatre in Belgrade. There were two objectives of this project: (1) a live concert performance of the opera, which produced an audio recording that can be found as an appendix; and, (2) an accompanying document containing a history and an analysis of the work. While Binièki's opera is recognized as an extraordinary artistic achievement, and a new genre of musical enrichment for Serbian music, little had been previously written either about the composer or the work. At Dawn is a romantic opera in the verismo tradition with national elements. The significance of this opera is not only in its artistic expression but also in how it helped the music of Serbia evolve. Early opera settings in Serbia in the mid-nineteenth to early twentieth century did not have the same wealth of history upon which to draw as had existed in the rich operatic oeuvre in Western Europe and Russia. Similarly, conditions for performance were not satisfactory, as were no professional orchestras or singers. Furthermore, audiences were not accustomed to this type of art form. The opera served as an educational instrument for the audience, not only training them to a different type of music but also evolving its national consciousness. Binièki's opera was a foundation on which later generations of composers built. The artistic value of this opera is emphasized. The musical language includes an assimilation of various influences from Western Europe and Russia, properly incorporated into the Serbian musical core. Audience reaction is discussed, a positive affirmation that Binièki was moving in the right direction in establishing a path for the further development of the artistic field of Serbian musical culture. A synopsis of the work as well as the requisite performing forces is also included.
ContributorsMinov, Jana (Author) / Russell, Timothy (Thesis advisor) / Levy, Benjamin (Committee member) / Schildkret, David (Committee member) / Rogers, Rodney (Committee member) / Reber, William (Committee member) / Arizona State University (Publisher)
Created2011
Description
Delirium is a piece for large wind ensemble that synthesizes compositional techniques to generate unique juxtapositions of contrasting musical elements. The piece is about 8:30 long and uses the full complement of winds, brass, and percussion. Although the composition begins tonally, chromatic alterations gradually shift the melodic content outside of

Delirium is a piece for large wind ensemble that synthesizes compositional techniques to generate unique juxtapositions of contrasting musical elements. The piece is about 8:30 long and uses the full complement of winds, brass, and percussion. Although the composition begins tonally, chromatic alterations gradually shift the melodic content outside of the tonal center. In addition to changes in the melody, octatonic, chromatic, and synthetic scales and quartal and quintal harmonies are progressively introduced throughout the piece to add color and create dissonance. Delirium contains four primary sections that are all related by chromatic mediant. The subdivisions of the first part create abrupt transitions between contrasting material, evocative of the symptoms of delirium. As each sub-section progresses, the A minor tonality of the opening gradually gives way to increased chromaticism and dissonance. The next area transitions to C minor and begins to feature octatonic scales, secundal harmonies, and chromatic flourishes more prominently. The full sound of the ensemble then drops to solo instruments in the third section, now in G# minor, where the elements of the previous section are built upon with the addition of synthetic scales and quartal harmonies. The last division, before the recapitulation of the opening material, provides a drastic change in atmosphere as the chromatic elements from before are removed and the tense sound of the quartal harmonies are replaced with quintal sonorities and a more tonal melody. The tonality of this final section is used to return to the opening material. After an incomplete recapitulation, the descending motive that is used throughout the piece, which can be found in measure 61 in the flutes, is inverted and layered by minor 3rds. This inverted figure builds to the same sonority found in measure138, before ending on an F# chord, a minor third away from the A minor tonal center of the opening and where the piece seems like it should end.
ContributorsBell, Jeremy, 1986- (Composer) / Rogers, Rodney (Thesis advisor) / Oldani, Robert (Committee member) / Levy, Benjamin (Committee member) / Arizona State University (Publisher)
Created2011
150400-Thumbnail Image.png
Description
Semiconductor nanowires are featured by their unique one-dimensional structure which makes them promising for small scale electronic and photonic device applications. Among them, III-V material nanowires are particularly outstanding due to their good electronic properties. In bulk, these materials reveal electron mobility much higher than conventional silicon based devices, for

Semiconductor nanowires are featured by their unique one-dimensional structure which makes them promising for small scale electronic and photonic device applications. Among them, III-V material nanowires are particularly outstanding due to their good electronic properties. In bulk, these materials reveal electron mobility much higher than conventional silicon based devices, for example at room temperature, InAs field effect transistor (FET) has electron mobility of 40,000 cm2/Vs more than 10 times of Si FET. This makes such materials promising for high speed nanowire FETs. With small bandgap, such as 0.354 eV for InAs and 1.52 eV for GaAs, it does not need high voltage to turn on such devices which leads to low power consumption devices. Another feature of direct bandgap allows their applications of optoelectronic devices such as avalanche photodiodes. However, there are challenges to face up. Due to their large surface to volume ratio, nanowire devices typically are strongly affected by the surface states. Although nanowires can be grown into single crystal structure, people observe crystal defects along the wires which can significantly affect the performance of devices. In this work, FETs made of two types of III-V nanowire, GaAs and InAs, are demonstrated. These nanowires are grown by catalyst-free MOCVD growth method. Vertically nanowires are transferred onto patterned substrates for coordinate calibration. Then electrodes are defined by e-beam lithography followed by deposition of contact metals. Prior to metal deposition, however, the substrates are dipped in ammonium hydroxide solution to remove native oxide layer formed on nanowire surface. Current vs. source-drain voltage with different gate bias are measured at room temperature. GaAs nanowire FETs show photo response while InAs nanowire FETs do not show that. Surface passivation is performed on GaAs FETs by using ammonium surfide solution. The best results on current increase is observed with around 20-30 minutes chemical treatment time. Gate response measurements are performed at room temperature, from which field effect mobility as high as 1490 cm2/Vs is extracted for InAs FETs. One major contributor for this is stacking faults defect existing along nanowires. For InAs FETs, thermal excitations observed from temperature dependent results which leads us to investigate potential barriers.
ContributorsLiang, Hanshuang (Author) / Yu, Hongbin (Thesis advisor) / Ferry, David (Committee member) / Tracy, Clarence (Committee member) / Arizona State University (Publisher)
Created2011
150333-Thumbnail Image.png
Description
A systematic approach to composition has been used by a variety of composers to control an assortment of musical elements in their pieces. This paper begins with a brief survey of some of the important systematic approaches that composers have employed in their compositions, devoting particular attention to Pierre Boulez's

A systematic approach to composition has been used by a variety of composers to control an assortment of musical elements in their pieces. This paper begins with a brief survey of some of the important systematic approaches that composers have employed in their compositions, devoting particular attention to Pierre Boulez's Structures Ia . The purpose of this survey is to examine several systematic approaches to composition by prominent composers and their philosophy in adopting this type of approach. The next section of the paper introduces my own systematic approach to composition: the Take-Away System. The third provides several musical applications of the system, citing my work, Octulus for two pianos, as an example. The appendix details theorems and observations within the system for further study.
ContributorsHarbin, Doug (Author) / Hackbarth, Glenn (Thesis advisor) / DeMars, James (Committee member) / Etezady, Roshanne, 1973- (Committee member) / Rockmaker, Jody (Committee member) / Rogers, Rodney (Committee member) / Arizona State University (Publisher)
Created2011
150358-Thumbnail Image.png
Description
During the twentieth-century, the dual influence of nationalism and modernism in the eclectic music from Latin America promoted an idiosyncratic style which naturally combined traditional themes, popular genres and secular music. The saxophone, commonly used as a popular instrument, started to develop a prominent role in Latin American classical music

During the twentieth-century, the dual influence of nationalism and modernism in the eclectic music from Latin America promoted an idiosyncratic style which naturally combined traditional themes, popular genres and secular music. The saxophone, commonly used as a popular instrument, started to develop a prominent role in Latin American classical music beginning in 1970. The lack of exposure and distribution of the Latin American repertoire has created a general perception that composers are not interested in the instrument, and that Latin American repertoire for classical saxophone is minimal. However, there are more than 1100 works originally written for saxophone in the region, and the amount continues to grow. This Modern Latin American Repertoire for Classical Saxophone: Recording Project and Performance Guide document establishes and exhibits seven works by seven representative Latin American composers.The recording includes works by Carlos Gonzalo Guzman (Colombia), Ricardo Tacuchian (Brazil), Roque Cordero (Panama), Luis Naón (Argentina), Andrés Alén-Rodriguez (Cuba), Alejandro César Morales (Mexico) and Jose-Luis Maúrtua (Peru), featuring a range of works for solo alto saxophone to alto saxophone with piano, alto saxophone with vibraphone, and tenor saxophone with electronic tape; thus forming an important selection of Latin American repertoire. Complete recorded performances of all seven pieces are supplemented by biographical, historical, and performance practice suggestions. The result is a written and audio guide to some of the most important pieces composed for classical saxophone in Latin America, with an emphasis on fostering interest in, and research into, composers who have contributed in the development and creation of the instrument in Latin America.
ContributorsOcampo Cardona, Javier Andrés (Author) / McAllister, Timothy (Thesis advisor) / Spring, Robert (Committee member) / Hill, Gary (Committee member) / Pilafian, Sam (Committee member) / Rogers, Rodney (Committee member) / Gardner, Joshua (Committee member) / Arizona State University (Publisher)
Created2011
150360-Thumbnail Image.png
Description
A workload-aware low-power neuromorphic controller for dynamic power and thermal management in VLSI systems is presented. The neuromorphic controller predicts future workload and temperature values based on the past values and CPU performance counters and preemptively regulates supply voltage and frequency. System-level measurements from stateof-the-art commercial microprocessors are used to

A workload-aware low-power neuromorphic controller for dynamic power and thermal management in VLSI systems is presented. The neuromorphic controller predicts future workload and temperature values based on the past values and CPU performance counters and preemptively regulates supply voltage and frequency. System-level measurements from stateof-the-art commercial microprocessors are used to get workload, temperature and CPU performance counter values. The controller is designed and simulated using circuit-design and synthesis tools. At device-level, on-chip planar inductors suffer from low inductance occupying large chip area. On-chip inductors with integrated magnetic materials are designed, simulated and fabricated to explore performance-efficiency trade offs and explore potential applications such as resonant clocking and on-chip voltage regulation. A system level study is conducted to evaluate the effect of on-chip voltage regulator employing magnetic inductors as the output filter. It is concluded that neuromorphic power controller is beneficial for fine-grained per-core power management in conjunction with on-chip voltage regulators utilizing scaled magnetic inductors.
ContributorsSinha, Saurabh (Author) / Cao, Yu (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Yu, Hongbin (Committee member) / Christen, Jennifer B. (Committee member) / Arizona State University (Publisher)
Created2011
149951-Thumbnail Image.png
Description
This study examined attitudes and perspectives of classroom guitar students toward the reading of staff notation in music. The purpose of this qualitative research was to reveal these perceptions in the student's own words, and compare them to those of orchestra and band students of comparable experience. Forty-seven students from

This study examined attitudes and perspectives of classroom guitar students toward the reading of staff notation in music. The purpose of this qualitative research was to reveal these perceptions in the student's own words, and compare them to those of orchestra and band students of comparable experience. Forty-seven students from four suburban middle and high schools on the east coast were selected through purposeful sampling techniques. Research instruments included a Musical Background Questionnaire and a thirty-five question Student Survey. Follow-up interviews were conducted with students to clarify or expound upon collected data. Guitar, orchestra, and band teachers were interviewed in order to provide their perspectives on the issues discussed. The Student Survey featured a five-point Likert-type scale, which measured how much students agreed or disagreed with various statements pertaining to their feelings about music, note-reading, or their class at school. Collected data were coded and used to calculate mean scores, standard deviations, and percentages of students in agreement or disagreement with each statement. Interviews were audio recorded and transcribed into a word processing document for analysis. The study found that while a variety of perspectives exist within a typical guitar class, some students do not find note-reading to be necessary for the types of music they desire to learn. Other findings included a perceived lack of relevance toward the classical elements of the guitar programs in the schools, a lack of educational consistency between classroom curricula and private lesson objectives, and the general description of the struggle some guitarists experience with staff notation. Implications of the collected data were discussed, along with recommendations for better engaging these students.
ContributorsWard, Stephen Michael (Author) / Koonce, Frank (Thesis advisor) / Schmidt, Margaret (Thesis advisor) / Buck, Nancy (Committee member) / Rogers, Rodney (Committee member) / McLin, Katherine (Committee member) / Arizona State University (Publisher)
Created2011
149956-Thumbnail Image.png
Description
CMOS technology is expected to enter the 10nm regime for future integrated circuits (IC). Such aggressive scaling leads to vastly increased variability, posing a grand challenge to robust IC design. Variations in CMOS are often divided into two types: intrinsic variations and process-induced variations. Intrinsic variations are limited by fundamental

CMOS technology is expected to enter the 10nm regime for future integrated circuits (IC). Such aggressive scaling leads to vastly increased variability, posing a grand challenge to robust IC design. Variations in CMOS are often divided into two types: intrinsic variations and process-induced variations. Intrinsic variations are limited by fundamental physics. They are inherent to CMOS structure, considered as one of the ultimate barriers to the continual scaling of CMOS devices. In this work the three primary intrinsic variations sources are studied, including random dopant fluctuation (RDF), line-edge roughness (LER) and oxide thickness fluctuation (OTF). The research is focused on the modeling and simulation of those variations and their scaling trends. Besides the three variations, a time dependent variation source, Random Telegraph Noise (RTN) is also studied. Different from the other three variations, RTN does not contribute much to the total variation amount, but aggregate the worst case of Vth variations in CMOS. In this work a TCAD based simulation study on RTN is presented, and a new SPICE based simulation method for RTN is proposed for time domain circuit analysis. Process-induced variations arise from the imperfection in silicon fabrication, and vary from foundries to foundries. In this work the layout dependent Vth shift due to Rapid-Thermal Annealing (RTA) are investigated. In this work, we develop joint thermal/TCAD simulation and compact modeling tools to analyze performance variability under various layout pattern densities and RTA conditions. Moreover, we propose a suite of compact models that bridge the underlying RTA process with device parameter change for efficient design optimization.
ContributorsYe, Yun, Ph.D (Author) / Cao, Yu (Thesis advisor) / Yu, Hongbin (Committee member) / Song, Hongjiang (Committee member) / Clark, Lawrence (Committee member) / Arizona State University (Publisher)
Created2011
149797-Thumbnail Image.png
Description
Many of the works of Dominick Argento have been researched and analyzed, but his choral work Evensong: Of Love and Angels s has received limited attention thus far. Written in memoriam for his wife Carolyn Bailey Argento, Evensong draws its musical material from her initials C.B.A. These letters, translated into

Many of the works of Dominick Argento have been researched and analyzed, but his choral work Evensong: Of Love and Angels s has received limited attention thus far. Written in memoriam for his wife Carolyn Bailey Argento, Evensong draws its musical material from her initials C.B.A. These letters, translated into note names, form a conspicuous head motive that is present in each movement of the work, and it serves multiple functions: as a melodic feature, as the foundation for a twelve-tone row, and as a harmonic base. This paper provides an overview of the work's conception with specific relation to Argento's biographical details, compositional style, and work habits; a brief review of the critical reception of the work; and a succinct analysis of the form and cyclical materials found in each movement.
ContributorsPage, Carrie Leigh, 1980- (Author) / Rogers, Rodney (Thesis advisor) / DeMars, James (Committee member) / Levy, Benjamin (Committee member) / Oldani, Robert (Committee member) / Arizona State University (Publisher)
Created2011