Matching Items (62)
Filtering by

Clear all filters

150680-Thumbnail Image.png
Description
There have been conflicting accounts of animation's facilitation in learning from instructional media, being at best no different if not hindering performance. Procedural motor learning represents one of the few the areas in which animations have shown to be facilitative. These studies examine the effects of instructional media (animation vs.

There have been conflicting accounts of animation's facilitation in learning from instructional media, being at best no different if not hindering performance. Procedural motor learning represents one of the few the areas in which animations have shown to be facilitative. These studies examine the effects of instructional media (animation vs. static), rotation (facing vs. over the shoulder) and spatial abilities (low vs. high spatial abilities) on two procedural motor tasks, knot tying and endoscope reprocessing. Results indicate that for all conditions observed in which participants engaged in procedural motor learning tasks, performance was significantly improved with animations over static images. Further, performance was greater for rotations of instructional media that did not require participants to perform a mental rotation under some circumstances. Interactions between Media x Rotation suggest that media that was animated and did not require a participant to mentally rotate led to improved performance. Individual spatial abilities were found to influence total steps correct and total number of errors made in the knot tying task, but this was not observed in the endoscope task. These findings have implications for the design of instructional media for procedural motor tasks and provide strong support for the usage of animations in this context.
ContributorsGarland, T. B (Author) / Sanchez, Chris A (Thesis advisor) / Cooke, Nancy J. (Committee member) / Branaghan, Russel (Committee member) / Arizona State University (Publisher)
Created2012
157488-Thumbnail Image.png
Description
Minimally invasive surgery is a surgical technique that is known for its reduced

patient recovery time. It is a surgical procedure done by using long reached tools and an

endoscopic camera to operate on the body though small incisions made near the point of

operation while viewing the live camera

Minimally invasive surgery is a surgical technique that is known for its reduced

patient recovery time. It is a surgical procedure done by using long reached tools and an

endoscopic camera to operate on the body though small incisions made near the point of

operation while viewing the live camera feed on a nearby display screen. Multiple camera

views are used in various industries such as surveillance and professional gaming to

allow users a spatial awareness advantage as to what is happening in the 3D space that is

presented to them on 2D displays. The concept has not effectively broken into the

medical industry yet. This thesis tests a multi-view camera system in which three cameras

are inserted into a laparoscopic surgical training box along with two surgical instruments,

to determine the system impact on spatial cognition, perceived cognitive workload, and

the overall time needed to complete the task, compared to one camera viewing the

traditional set up. The task is a non-medical task and is one of five typically used to train

surgeons’ motor skills when initially learning minimally invasive surgical procedures.

The task is a peg transfer and will be conducted by 30 people who are randomly assigned

to one of two conditions; one display and three displays. The results indicated that when

three displays were present the overall time initially using them to complete a task was

slower; the task was perceived to be completed more easily and with less strain; and

participants had a slightly higher performance rate.
ContributorsSchroll, Katelyn (Author) / Cooke, Nancy J. (Thesis advisor) / Chiou, Erin (Committee member) / Craig, Scotty (Committee member) / Arizona State University (Publisher)
Created2019
171442-Thumbnail Image.png
Description
Team communication facilitates team coordination strategies and situations, and how teammates perceive one another. In human-machine teams, these perceptions affect how people trust and anthropomorphize their machine counterparts, which in turn affects future team communication, forming a feedback loop. This thesis investigates how personifying and objectifying contents in human-machine team

Team communication facilitates team coordination strategies and situations, and how teammates perceive one another. In human-machine teams, these perceptions affect how people trust and anthropomorphize their machine counterparts, which in turn affects future team communication, forming a feedback loop. This thesis investigates how personifying and objectifying contents in human-machine team communication relate to team performance and perceptions in a simulated remotely piloted aircraft system task environment. A total of 46 participants grouped into teams of two were assigned unique roles and teamed with a synthetic pilot agent that in reality was a trained confederate following a script. Quantities of verbal personifications and objectifications were compared to questionnaire responses about participants’ perceived trust and anthropomorphism of the synthetic pilot, as well as team performance. It was hypothesized that verbal personifications would positively correlate with reflective trust, anthropomorphism, and team performance, and that verbal objectifications would negatively correlate with the same measures. It was also predicted that verbal personifications would decrease over time as human teammates interact more with the machine teammate, and that verbal objectifications would increase. Verbal personifications were not found to be correlated with trust and anthropomorphism outside of perceptions related to gender, albeit patterns of change in the navigator’s personifications coincided with a co-calibration of trust among the navigator and the photographer. Results supported the prediction that verbal objectifications are negatively correlated with trust and anthropomorphism of a teammate. Significant relationships between verbal personifications and objectifications and team performance were not found. This study provides support to the notion that people verbally personify machines to ease communication when necessary, and that the same processes that underlie tendencies to personify machines may be reciprocally related to those that influence team trust. Overall, this study provides evidence that personifying and objectifying language in human-machine team communication is a viable candidate for measuring the perceptions and states of teams, even in highly restricted communication environments.
ContributorsCohen, Myke C. (Author) / Cooke, Nancy J. (Thesis advisor) / Chiou, Erin K. (Committee member) / Amazeen, Polemnia G. (Committee member) / Arizona State University (Publisher)
Created2022
190942-Thumbnail Image.png
Description
It is difficult to imagine a society that does not utilize teams. At the same time, teams need to evolve to meet today’s challenges of the ever-increasing proliferation of data and complexity. It may be useful to add artificial intelligent (AI) agents to team up with humans. Then, as AI

It is difficult to imagine a society that does not utilize teams. At the same time, teams need to evolve to meet today’s challenges of the ever-increasing proliferation of data and complexity. It may be useful to add artificial intelligent (AI) agents to team up with humans. Then, as AI agents are integrated into the team, the first study asks what roles can AI agents take? The first study investigates this issue by asking whether an AI agent can take the role of a facilitator and in turn, improve planning outcomes by facilitating team processes. Results indicate that the human facilitator was significantly better than the AI facilitator at reducing cognitive biases such as groupthink, anchoring, and information pooling, as well as increasing decision quality and score. Additionally, participants viewed the AI facilitator negatively and ignored its inputs compared to the human facilitator. Yet, participants in the AI Facilitator condition performed significantly better than participants in the No Facilitator condition, illustrating that having an AI facilitator was better than having no facilitator at all. The second study explores whether artificial social intelligence (ASI) agents can take the role of advisors and subsequently improve team processes and mission outcome during a simulated search-and-rescue mission. The results of this study indicate that although ASI advisors can successfully advise teams, they also use a significantly greater number of taskwork interventions than teamwork interventions. Additionally, this study served to identify what the ASI advisors got right compared to the human advisor and vice versa. Implications and future directions are discussed.
ContributorsBuchanan, Verica (Author) / Cooke, Nancy J. (Thesis advisor) / Gutzwiller, Robert S. (Committee member) / Roscoe, Rod D. (Committee member) / Arizona State University (Publisher)
Created2023
171652-Thumbnail Image.png
Description
The implementation of chatbots in customer service is widely prevalent in today’s world with insufficient research to appropriately refine all of their conversational abilities. Chatbots are favored for their ability to handle simple and typical requests made by users, but chatbots have proven to be prone to conversational breakdowns. The

The implementation of chatbots in customer service is widely prevalent in today’s world with insufficient research to appropriately refine all of their conversational abilities. Chatbots are favored for their ability to handle simple and typical requests made by users, but chatbots have proven to be prone to conversational breakdowns. The study researched how the use of repair strategies to combat conversational breakdowns in a simple versus complex task setting affected user experience. Thirty participants were collected and organized into six different groups in a two by three between subjects factorial design. Participants were assigned one of two tasks (simple or complex) and one of three repair strategies (repeat, confirmation, or options). A Wizard-of-Oz approach was used to simulate a chatbot that participants interacted with to complete a task in a hypothetical setting. Participants completed the task with this researcher-controlled chatbot as it intentionally failed the conversation multiple times, only to repair it with a repair strategy. Participants recorded their user experience regarding the chatbot afterwards. An Analysis of Covariance statistical test was run with task duration being a covariate variable. Findings indicate that the simple task difficulty was significant in improving the user experience that participants recorded whereas the particular repair strategy had no effect on the user experience. This indicates that simpler tasks lead to improved positive user experience and the more time that is spent on a task, the less positive the user experience. Overall, results associated with the effects of task difficulty and repair strategies on user experience were only partially consistent with previous literature.
ContributorsRios, Aaron (Author) / Cooke, Nancy J. (Thesis advisor) / Gutzwiller, Robert S. (Committee member) / Chiou, Erin K. (Committee member) / Arizona State University (Publisher)
Created2022
189223-Thumbnail Image.png
Description
What makes a human, artificial intelligence, and robot team (HART) succeed despite unforeseen challenges in a complex sociotechnical world? Are there personalities that are better suited for HARTs facing the unexpected? Only recently has resilience been considered specifically at the team level, and few studies have addressed team resilience for

What makes a human, artificial intelligence, and robot team (HART) succeed despite unforeseen challenges in a complex sociotechnical world? Are there personalities that are better suited for HARTs facing the unexpected? Only recently has resilience been considered specifically at the team level, and few studies have addressed team resilience for HARTs. Team resilience here is defined as the ability of a team to reorganize team processes to rebound or morph to overcome an unforeseen challenge. A distinction from the individual, group, or organizational aspects of resilience for teams is how team resilience trades off with team interdependent capacity. The following study collected data from 28 teams comprised of two human participants (recruited from a university populace) and a synthetic teammate (played by an experienced experimenter). Each team completed a series of six reconnaissance missions presented to them in a Minecraft world. The research aim was to identify how to better integrate synthetic teammates for high-risk, high-stress dynamic operations to boost HART performance and HART resilience. All team communications were orally over Zoom. The primary manipulation was the communication given by the synthetic teammate (between-subjects, Task or Task+): Task only communicated the essentials, and Task+ offered clear and concise communications of its own capabilities and limitations. Performance and resilience were measured using a primary mission task score (based upon how many tasks teams completed), time-based measures (such as how long it took to recognize a problem or reorder team processes), and a subjective team resilience score (calculated from participant responses to a survey prompt). The research findings suggest the clear and concise reminders from Task+ enhanced HART performance and HART resilience during high-stress missions in which the teams were challenged by novel events. An exploratory study regarding what personalities may correlate with these improved performance metrics indicated that the Big Five trait taxonomies of extraversion and conscientiousness were positively correlated, whereas neuroticism was negatively correlated with higher HART performance and HART resilience. Future integration of synthetic teammates must consider the types of communications that will be offered to maximize HART performance and HART resilience.
ContributorsGraham, Hudson D. (Author) / Cooke, Nancy J. (Thesis advisor) / Gray, Robert (Committee member) / Holder, Eric (Committee member) / Arizona State University (Publisher)
Created2023
157402-Thumbnail Image.png
Description
As deception in cyberspace becomes more dynamic, research in this area should also take a dynamic approach to battling deception and false information. Research has previously shown that people are no better than chance at detecting deception. Deceptive information in cyberspace, specifically on social media, is not exempt from this

As deception in cyberspace becomes more dynamic, research in this area should also take a dynamic approach to battling deception and false information. Research has previously shown that people are no better than chance at detecting deception. Deceptive information in cyberspace, specifically on social media, is not exempt from this pitfall. Current practices in social media rely on the users to detect false information and use appropriate discretion when deciding to share information online. This is ineffective and will predicatively end with users being unable to discern true from false information at all, as deceptive information becomes more difficult to distinguish from true information. To proactively combat inaccurate and deceptive information on social media, research must be conducted to understand not only the interaction effects of false content and user characteristics, but user behavior that stems from this interaction as well. This study investigated the effects of confirmation bias and susceptibility to deception on an individual’s choice to share information, specifically to understand how these factors relate to the sharing of false controversial information.
ContributorsChinzi, Ashley (Author) / Cooke, Nancy J. (Thesis advisor) / Chiou, Erin (Committee member) / Becker, David V (Committee member) / Arizona State University (Publisher)
Created2019
157384-Thumbnail Image.png
Description
Student pilots are the future of aviation and one of the biggest problems that they face as new pilots is fatigue. The survey was sent out asking if student pilots were fatigued, if they attribute flight training, school work, work outside of school, and social obligations to their sleep loss,

Student pilots are the future of aviation and one of the biggest problems that they face as new pilots is fatigue. The survey was sent out asking if student pilots were fatigued, if they attribute flight training, school work, work outside of school, and social obligations to their sleep loss, and how they spend their time on those activities. The survey was given to aviation students at Arizona State University (ASU) Polytechnic Campus. ASU student pilots were found to be fatigued through a single sample t-test. Other t-tests were done on each of the questions that asked student pilots how flight training, school work, work outside of school and social obligations affect their sleep loss. Flight training and school were found to be contributing to student pilots sleep loss. Work outside of school and social obligations were found to not be contributing to student pilots sleep loss. It was found that student pilots’ tendency to use a planner or calendar was found to not be significant. Along with this planning through the week when they will do assignments or study for exams was also not found to be significant. Students making lists of assignments and when they are due was also found to not be significant. The t-test also found that student pilots are neutral on the topic of whether good time management skills would help increase the amount of sleep that they get.
ContributorsHarris, Mariah Jean (Author) / Cooke, Nancy J. (Thesis advisor) / Nullmeyer, Robert (Thesis advisor) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2019
157345-Thumbnail Image.png
Description
The prospects of commercially available autonomous vehicles are surely tantalizing, however the implementation of these vehicles and their strain on the social dynamics between motorists and pedestrians remains unknown. Questions concerning how autonomous vehicles will communicate safety and intent to pedestrians remain largely unanswered. This study examines the efficacy of

The prospects of commercially available autonomous vehicles are surely tantalizing, however the implementation of these vehicles and their strain on the social dynamics between motorists and pedestrians remains unknown. Questions concerning how autonomous vehicles will communicate safety and intent to pedestrians remain largely unanswered. This study examines the efficacy of various proposed technologies for bridging the communication gap between self-driving cars and pedestrians. Displays utilizing words like “safe” and “danger” seem to be effective in communicating with pedestrians and other road users. Future research should attempt to study different external notification interfaces in real-life settings to more accurately gauge pedestrian responses.
ContributorsMuqolli, Endrit (Author) / Cooke, Nancy J. (Thesis advisor) / Chiou, Erin (Committee member) / Gray, Rob (Committee member) / Arizona State University (Publisher)
Created2019
157421-Thumbnail Image.png
Description
Human-robot interaction has expanded immensely within dynamic environments. The goals of human-robot interaction are to increase productivity, efficiency and safety. In order for the integration of human-robot interaction to be seamless and effective humans must be willing to trust the capabilities of assistive robots. A major priority for human-robot interaction

Human-robot interaction has expanded immensely within dynamic environments. The goals of human-robot interaction are to increase productivity, efficiency and safety. In order for the integration of human-robot interaction to be seamless and effective humans must be willing to trust the capabilities of assistive robots. A major priority for human-robot interaction should be to understand how human dyads have been historically effective within a joint-task setting. This will ensure that all goals can be met in human robot settings. The aim of the present study was to examine human dyads and the effects of an unexpected interruption. Humans’ interpersonal and individual levels of trust were studied in order to draw appropriate conclusions. Seventeen undergraduate and graduate level dyads were collected from Arizona State University. Participants were broken up into either a surprise condition or a baseline condition. Participants individually took two surveys in order to have an accurate understanding of levels of dispositional and individual levels of trust. The findings showed that participant levels of interpersonal trust were average. Surprisingly, participants who participated in the surprise condition afterwards, showed moderate to high levels of dyad trust. This effect showed that participants became more reliant on their partners when interrupted by a surprising event. Future studies will take this knowledge and apply it to human-robot interaction, in order to mimic the seamless team-interaction shown in historically effective dyads, specifically human team interaction.
ContributorsShaw, Alexandra Luann (Author) / Chiou, Erin (Thesis advisor) / Cooke, Nancy J. (Committee member) / Craig, Scotty (Committee member) / Arizona State University (Publisher)
Created2019