Matching Items (14)
Filtering by

Clear all filters

150168-Thumbnail Image.png
Description
Like individual organisms, complex social groups are able to maintain predictable trajectories of growth, from initial colony foundation to mature reproductively capable units. They do so while simultaneously responding flexibly to variation in nutrient availability and intake. Leafcutter ant colonies function as tri-trophic systems, in which the ants harvest vegetation

Like individual organisms, complex social groups are able to maintain predictable trajectories of growth, from initial colony foundation to mature reproductively capable units. They do so while simultaneously responding flexibly to variation in nutrient availability and intake. Leafcutter ant colonies function as tri-trophic systems, in which the ants harvest vegetation to grow a fungus that, in turn, serves as food for the colony. Fungal growth rates and colony worker production are interdependent, regulated by nutritional and behavioral feedbacks. Fungal growth and quality are directly affected by worker foraging decisions, while worker production is, in turn, dependent on the amount and condition of the fungus. In this dissertation, I first characterized the growth relationship between the workers and the fungus of the desert leafcutter ant Acromyrmex versicolor during early stages of colony development, from colony foundation by groups of queens through the beginnings of exponential growth. I found that this relationship undergoes a period of slow growth and instability when workers first emerge, and then becomes allometrically positive. I then evaluated how mass and element ratios of resources collected by the ants are translated into fungus and worker population growth, and refuse, finding that colony digestive efficiency is comparable to digestive efficiencies of other herbivorous insects and ruminants. To test how colonies behaviorally respond to perturbations of the fungus garden, I quantified activity levels and task performance of workers in colonies with either supplemented or diminished fungus gardens, and found that colonies adjusted activity and task allocation in response to the fungus garden size. Finally, to identify possible forms of nutrient limitation, I measured how colony performance was affected by changes in the relative amounts of carbohydrates, protein, and phosphorus available in the resources used to grow the fungus garden. From this experiment, I concluded that colony growth is primarily carbohydrate-limited.
ContributorsClark, Rebecca, 1981- (Author) / Fewell, Jennifer H (Thesis advisor) / Mueller, Ulrich (Committee member) / Liebig, Juergen (Committee member) / Elser, James (Committee member) / Harrison, Jon (Committee member) / Arizona State University (Publisher)
Created2011
150228-Thumbnail Image.png
Description
The repression of reproductive competition and the enforcement of altruism are key components to the success of animal societies. Eusocial insects are defined by having a reproductive division of labor, in which reproduction is relegated to one or few individuals while the rest of the group members maintain the colony

The repression of reproductive competition and the enforcement of altruism are key components to the success of animal societies. Eusocial insects are defined by having a reproductive division of labor, in which reproduction is relegated to one or few individuals while the rest of the group members maintain the colony and help raise offspring. However, workers have retained the ability to reproduce in most insect societies. In the social Hymenoptera, due to haplodiploidy, workers can lay unfertilized male destined eggs without mating. Potential conflict between workers and queens can arise over male production, and policing behaviors performed by nestmate workers and queens are a means of repressing worker reproduction. This work describes the means and results of the regulation of worker reproduction in the ant species Aphaenogaster cockerelli. Through manipulative laboratory studies on mature colonies, the lack of egg policing and the presence of physical policing by both workers and queens of this species are described. Through chemical analysis and artificial chemical treatments, the role of cuticular hydrocarbons as indicators of fertility status and the informational basis of policing in this species is demonstrated. An additional queen-specific chemical signal in the Dufour's gland is discovered to be used to direct nestmate aggression towards reproductive competitors. Finally, the level of actual worker-derived males in field colonies is measured. Together, these studies demonstrate the effectiveness of policing behaviors on the suppression of worker reproduction in a social insect species, and provide an example of how punishment and the threat of punishment is a powerful force in maintaining cooperative societies.
ContributorsSmith, Adrian A. (Author) / Liebig, Juergen (Thesis advisor) / Hoelldobler, Bert (Thesis advisor) / Gadau, Juergen (Committee member) / Johnson, Robert A. (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
151378-Thumbnail Image.png
Description
Of all the signals and cues that orchestrate the activities of a social insect colony, the reproductives' fertility pheromones are perhaps the most fundamental. These pheromones regulate reproductive division of labor, a defining characteristic of eusociality. Despite their critical role, reproductive fertility pheromones are not evenly expressed across the development

Of all the signals and cues that orchestrate the activities of a social insect colony, the reproductives' fertility pheromones are perhaps the most fundamental. These pheromones regulate reproductive division of labor, a defining characteristic of eusociality. Despite their critical role, reproductive fertility pheromones are not evenly expressed across the development of a social insect colony and may even be absent in the earliest colony stages. In the ant Camponotus floridanus, queens of incipient colonies do not produce the cuticular hydrocarbons that serve as fertility and egg-marking signals in this species. My dissertation investigates the consequences of the dramatic change in the quantity of these pheromones that occurs as the colony grows. C. floridanus workers from large, established colonies use egg surface hydrocarbons to discriminate among eggs. Eggs with surface hydrocarbons typical of eggs laid by established queens are nurtured, whereas eggs lacking these signals (i.e., eggs laid by workers and incipient queens) are destroyed. I characterized how workers from incipient colonies responded to eggs lacking queen fertility hydrocarbons. I found that established-queen-laid eggs, incipient-queen-laid eggs, and worker-laid eggs were not destroyed by workers at this colony stage. Destruction of worker-laid eggs is a form of policing, and theoretical models predict that policing should be strongest in incipient colonies. Since there was no evidence of policing by egg-eating in incipient C. floridanus colonies, I searched for evidence of another policing mechanism at this colony stage. Finding none, I discuss reasons why policing behavior may not be expressed in incipient colonies. I then considered the mechanism that accounts for the change in workers' response to eggs. By manipulating ants' egg experience and testing their egg-policing decisions, I found that ants use a combination of learned and innate criteria to discriminate between targets of care and destruction. Finally, I investigated how the increasing strength of queen-fertility hydrocarbons affects nestmate recognition, which also relies on cuticular hydrocarbons. I found that queens with strong fertility hydrocarbons can be transferred between established colonies without aggression, but they cannot be introduced into incipient colonies. Queens from incipient colonies cannot be transferred into incipient or established colonies.
ContributorsMoore, Dani (Author) / Liebig, Juergen (Thesis advisor) / Gadau, Juergen (Committee member) / Pratt, Stephen (Committee member) / Smith, Brian (Committee member) / Rutowski, Ronald (Committee member) / Arizona State University (Publisher)
Created2012
150622-Thumbnail Image.png
Description
A notable feature of advanced eusocial insect groups is a division of labor within the sterile worker caste. However, the physiological aspects underlying the differentiation of behavioral phenotypes are poorly understood in one of the most successful social taxa, the ants. By starting to understand the foundations on which social

A notable feature of advanced eusocial insect groups is a division of labor within the sterile worker caste. However, the physiological aspects underlying the differentiation of behavioral phenotypes are poorly understood in one of the most successful social taxa, the ants. By starting to understand the foundations on which social behaviors are built, it also becomes possible to better evaluate hypothetical explanations regarding the mechanisms behind the evolution of insect eusociality, such as the argument that the reproductive regulatory infrastructure of solitary ancestors was co-opted and modified to produce distinct castes. This dissertation provides new information regarding the internal factors that could underlie the division of labor observed in both founding queens and workers of Pogonomyrmex californicus ants, and shows that changes in task performance are correlated with differences in reproductive physiology in both castes. In queens and workers, foraging behavior is linked to elevated levels of the reproductively-associated juvenile hormone (JH), and, in workers, this behavioral change is accompanied by depressed levels of ecdysteroid hormones. In both castes, the transition to foraging is also associated with reduced ovarian activity. Further investigation shows that queens remain behaviorally plastic, even after worker emergence, but the association between JH and behavioral bias remains the same, suggesting that this hormone is an important component of behavioral development in these ants. In addition to these reproductive factors, treatment with an inhibitor of the nutrient-sensing pathway Target of Rapamycin (TOR) also causes queens to become biased towards foraging, suggesting an additional sensory component that could play an important role in division of labor. Overall, this work provides novel identification of the possible regulators behind ant division of labor, and suggests how reproductive physiology could play an important role in the evolution and regulation of non-reproductive social behaviors.
ContributorsDolezal, Adam G (Author) / Amdam, Gro V (Thesis advisor) / Brent, Colin S. (Committee member) / Gadau, Juergen (Committee member) / Hoelldobler, Bert (Committee member) / Liebig, Juergen (Committee member) / Arizona State University (Publisher)
Created2012
161939-Thumbnail Image.png
Description
Traditional Reinforcement Learning (RL) assumes to learn policies with respect to reward available from the environment but sometimes learning in a complex domain requires wisdom which comes from a wide range of experience. In behavior based robotics, it is observed that a complex behavior can be described by a combination

Traditional Reinforcement Learning (RL) assumes to learn policies with respect to reward available from the environment but sometimes learning in a complex domain requires wisdom which comes from a wide range of experience. In behavior based robotics, it is observed that a complex behavior can be described by a combination of simpler behaviors. It is tempting to apply similar idea such that simpler behaviors can be combined in a meaningful way to tailor the complex combination. Such an approach would enable faster learning and modular design of behaviors. Complex behaviors can be combined with other behaviors to create even more advanced behaviors resulting in a rich set of possibilities. Similar to RL, combined behavior can keep evolving by interacting with the environment. The requirement of this method is to specify a reasonable set of simple behaviors. In this research, I present an algorithm that aims at combining behavior such that the resulting behavior has characteristics of each individual behavior. This approach has been inspired by behavior based robotics, such as the subsumption architecture and motor schema-based design. The combination algorithm outputs n weights to combine behaviors linearly. The weights are state dependent and change dynamically at every step in an episode. This idea is tested on discrete and continuous environments like OpenAI’s “Lunar Lander” and “Biped Walker”. Results are compared with related domains like Multi-objective RL, Hierarchical RL, Transfer learning, and basic RL. It is observed that the combination of behaviors is a novel way of learning which helps the agent achieve required characteristics. A combination is learned for a given state and so the agent is able to learn faster in an efficient manner compared to other similar approaches. Agent beautifully demonstrates characteristics of multiple behaviors which helps the agent to learn and adapt to the environment. Future directions are also suggested as possible extensions to this research.
ContributorsVora, Kevin Jatin (Author) / Zhang, Yu (Thesis advisor) / Yang, Yezhou (Committee member) / Praharaj, Sarbeswar (Committee member) / Arizona State University (Publisher)
Created2021
171582-Thumbnail Image.png
Description
High throughput transcriptome data analysis like Single-cell Ribonucleic Acid sequencing (scRNA-seq) and Circular Ribonucleic Acid (circRNA) data have made significant breakthroughs, especially in cancer genomics. Analysis of transcriptome time series data is core in identifying time point(s) where drastic changes in gene transcription are associated with homeostatic to non-homeostatic cellular

High throughput transcriptome data analysis like Single-cell Ribonucleic Acid sequencing (scRNA-seq) and Circular Ribonucleic Acid (circRNA) data have made significant breakthroughs, especially in cancer genomics. Analysis of transcriptome time series data is core in identifying time point(s) where drastic changes in gene transcription are associated with homeostatic to non-homeostatic cellular transition (tipping points). In Chapter 2 of this dissertation, I present a novel cell-type specific and co-expression-based tipping point detection method to identify target gene (TG) versus transcription factor (TF) pairs whose differential co-expression across time points drive biological changes in different cell types and the time point when these changes are observed. This method was applied to scRNA-seq data sets from a SARS-CoV-2 study (18 time points), a human cerebellum development study (9 time points), and a lung injury study (18 time points). Similarly, leveraging transcriptome data across treatment time points, I developed methodologies to identify treatment-induced and cell-type specific differentially co-expressed pairs (DCEPs). In part one of Chapter 3, I presented a pipeline that used a series of statistical tests to detect DCEPs. This method was applied to scRNA-seq data of patients with non-small cell lung cancer (NSCLC) sequenced across cancer treatment times. However, this pipeline does not account for correlations among multiple single cells from the same sample and correlations among multiple samples from the same patient. In Part 2 of Chapter 3, I presented a solution to this problem using a mixed-effect model. In Chapter 4, I present a summary of my work that focused on the cross-species analysis of circRNA transcriptome time series data. I compared circRNA profiles in neonatal pig and mouse hearts, identified orthologous circRNAs, and discussed regulation mechanisms of cardiomyocyte proliferation and myocardial regeneration conserved between mouse and pig at different time points.
ContributorsNyarige, Verah Mocheche (Author) / Liu, Li (Thesis advisor) / Wang, Junwen (Thesis advisor) / Dinu, Valentin (Committee member) / Arizona State University (Publisher)
Created2022
171902-Thumbnail Image.png
Description
Beta-Amyloid(Aβ) plaques and tau protein tangles in the brain are now widely recognized as the defining hallmarks of Alzheimer’s disease (AD), followed by structural atrophy detectable on brain magnetic resonance imaging (MRI) scans. However, current methods to detect Aβ/tau pathology are either invasive (lumbar puncture) or quite costly and not

Beta-Amyloid(Aβ) plaques and tau protein tangles in the brain are now widely recognized as the defining hallmarks of Alzheimer’s disease (AD), followed by structural atrophy detectable on brain magnetic resonance imaging (MRI) scans. However, current methods to detect Aβ/tau pathology are either invasive (lumbar puncture) or quite costly and not widely available (positron emission tomography (PET)). And one of the particular neurodegenerative regions is the hippocampus to which the influence of Aβ/tau on has been one of the research projects focuses in the AD pathophysiological progress. In this dissertation, I proposed three novel machine learning and statistical models to examine subtle aspects of the hippocampal morphometry from MRI that are associated with Aβ /tau burden in the brain, measured using PET images. The first model is a novel unsupervised feature reduction model to generate a low-dimensional representation of hippocampal morphometry for each individual subject, which has superior performance in predicting Aβ/tau burden in the brain. The second one is an efficient federated group lasso model to identify the hippocampal subregions where atrophy is strongly associated with abnormal Aβ/Tau. The last one is a federated model for imaging genetics, which can identify genetic and transcriptomic influences on hippocampal morphometry. Finally, I stated the results of these three models that have been published or submitted to peer-reviewed conferences and journals.
ContributorsWu, Jianfeng (Author) / Wang, Yalin (Thesis advisor) / Li, Baoxin (Committee member) / Liang, Jianming (Committee member) / Wang, Junwen (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2022
154953-Thumbnail Image.png
Description
Intervertebral Disc Degeneration (IVDD) is a complex phenomenon characterizing the desiccation and structural compromise of the primary joint in the human spine. The intervertebral disc (IVD) serves to connect vertebral bodies, cushion shock, and allow for flexion and extension of the vertebral column. Often presenting in the 4th or 5th

Intervertebral Disc Degeneration (IVDD) is a complex phenomenon characterizing the desiccation and structural compromise of the primary joint in the human spine. The intervertebral disc (IVD) serves to connect vertebral bodies, cushion shock, and allow for flexion and extension of the vertebral column. Often presenting in the 4th or 5th decades of life as low back pain, this disease was originally believed to be the result of natural “wear and tear” coupled with repetitive mechanical insult, and as such most studies focus on patients between 40 and 50 years of age. Research over the past two decades, however, has demonstrated that environmental factors have only a modest effect on disc degeneration, with genetic influences playing a much more substantial role. Extensive research has focused on this process, though definitive risk factors and a clear pathophysiology have proven elusive. The aim of this study was to assemble a cohort of patients exhibiting definitive signs of degeneration who were well below the average age of presentation, with minimal or no exposure to suspected environmental risk factors and to conduct a targeted genome analysis in an attempt to elucidate a common genetic component. Through whole genome sequencing and analysis, the results corroborated findings in a previous study, as well as demonstrated a potential connection and influence between mutations found in IVD structural or functional genes, and the provocation of IVDD. Though the sample size was limited in scale and age, these findings suggest that further IVDD research into the association of variants in collagen, aggrecan and the insulin-like growth factor receptor genes of young patients with an early presentation of disc degeneration and minimal exposure to suspected risk factors is merited.
ContributorsFulton, Travis (Author) / Liebig, Juergen (Thesis advisor) / Neisewander, Janet (Committee member) / Theodore, Nicholas (Committee member) / Arizona State University (Publisher)
Created2016
153365-Thumbnail Image.png
Description
Warning coloration deters predators from attacking prey that are defended, usually by being distasteful, toxic, or otherwise costly for predators to pursue and consume. Predators may have an innate response to warning colors or learn to associate them with a defense through trial and error. In general, predators should select

Warning coloration deters predators from attacking prey that are defended, usually by being distasteful, toxic, or otherwise costly for predators to pursue and consume. Predators may have an innate response to warning colors or learn to associate them with a defense through trial and error. In general, predators should select for warning signals that are easy to learn and recognize. Previous research demonstrates long-wavelength colors (e.g. red and yellow) are effective because they are readily detected and learned. However, a number of defended animals display short-wavelength coloration (e.g. blue and violet), such as the pipevine swallowtail butterfly (Battus philenor). The role of blue coloration in warning signals had not previously been explicitly tested. My research showed in laboratory experiments that curve-billed thrashers (Toxostoma curvirostre) and Gambel's quail (Callipepla gambelii) can learn and recognize the iridescent blue of B. philenor as a warning signal and that it is innately avoided. I tested the attack rates of these colors in the field and blue was not as effective as orange. I concluded that blue colors may function as warning signals, but the effectiveness is likely dependent on the context and predator.

Blue colors are often iridescent in nature and the effect of iridescence on warning signal function was unknown. I reared B. philenor larvae under varied food deprivation treatments. Iridescent colors did not have more variation than pigment-based colors under these conditions; variation which could affect predator learning. Learning could also be affected by changes in appearance, as iridescent colors change in both hue and brightness as the angle of illuminating light and viewer change in relation to the color surface. Iridescent colors can also be much brighter than pigment-based colors and iridescent animals can statically display different hues. I tested these potential effects on warning signal learning by domestic chickens (Gallus gallus domesticus) and found that variation due to the directionality of iridescence and a brighter warning signal did not influence learning. However, blue-violet was learned more readily than blue-green. These experiments revealed that the directionality of iridescent coloration does not likely negatively affect its potential effectiveness as a warning signal.
ContributorsPegram, Kimberly Vann (Author) / Rutowski, Ronald L (Thesis advisor) / Hoelldobler, Berthold (Committee member) / Liebig, Juergen (Committee member) / McGraw, Kevin (Committee member) / Smith, Brian H. (Committee member) / Arizona State University (Publisher)
Created2015
152722-Thumbnail Image.png
Description
The coordination of group behavior in the social insects is representative of a broader phenomenon in nature, emergent biological complexity. In such systems, it is believed that large-scale patterns result from the interaction of relatively simple subunits. This dissertation involved the study of one such system: the social foraging of

The coordination of group behavior in the social insects is representative of a broader phenomenon in nature, emergent biological complexity. In such systems, it is believed that large-scale patterns result from the interaction of relatively simple subunits. This dissertation involved the study of one such system: the social foraging of the ant Temnothorax rugatulus. Physically tiny with small population sizes, these cavity-dwelling ants provide a good model system to explore the mechanisms and ultimate origins of collective behavior in insect societies. My studies showed that colonies robustly exploit sugar water. Given a choice between feeders unequal in quality, colonies allocate more foragers to the better feeder. If the feeders change in quality, colonies are able to reallocate their foragers to the new location of the better feeder. These qualities of flexibility and allocation could be explained by the nature of positive feedback (tandem run recruitment) that these ants use. By observing foraging colonies with paint-marked ants, I was able to determine the `rules' that individuals follow: foragers recruit more and give up less when they find a better food source. By altering the nutritional condition of colonies, I found that these rules are flexible - attuned to the colony state. In starved colonies, individual ants are more likely to explore and recruit to food sources than in well-fed colonies. Similar to honeybees, Temmnothorax foragers appear to modulate their exploitation and recruitment behavior in response to environmental and social cues. Finally, I explored the influence of ecology (resource distribution) on the foraging success of colonies. Larger colonies showed increased consistency and a greater rate of harvest than smaller colonies, but this advantage was mediated by the distribution of resources. While patchy or rare food sources exaggerated the relative success of large colonies, regularly (or easily found) distributions leveled the playing field for smaller colonies. Social foraging in ant societies can best be understood when we view the colony as a single organism and the phenotype - group size, communication, and individual behavior - as integrated components of a homeostatic unit.
ContributorsShaffer, Zachary (Author) / Pratt, Stephen C (Thesis advisor) / Hölldobler, Bert (Committee member) / Janssen, Marco (Committee member) / Fewell, Jennifer (Committee member) / Liebig, Juergen (Committee member) / Arizona State University (Publisher)
Created2014