Matching Items (21)
Filtering by

Clear all filters

152123-Thumbnail Image.png
Description
This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems

This dissertation investigates the condition of skeletal muscle insulin resistance using bioinformatics and computational biology approaches. Drawing from several studies and numerous data sources, I have attempted to uncover molecular mechanisms at multiple levels. From the detailed atomistic simulations of a single protein, to datamining approaches applied at the systems biology level, I provide new targets to explore for the research community. Furthermore I present a new online web resource that unifies various bioinformatics databases to enable discovery of relevant features in 3D protein structures.
ContributorsMielke, Clinton (Author) / Mandarino, Lawrence (Committee member) / LaBaer, Joshua (Committee member) / Magee, D. Mitchell (Committee member) / Dinu, Valentin (Committee member) / Willis, Wayne (Committee member) / Arizona State University (Publisher)
Created2013
150818-Thumbnail Image.png
Description
While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria

While exercising mammalian muscle increasingly relies on carbohydrates for fuel as aerobic exercise intensity rises above the moderate range, flying birds are extraordinary endurance athletes and fuel flight, a moderate-high intensity exercise, almost exclusively with lipid. In addition, Aves have long lifespans compared to weight-matched mammals. As skeletal muscle mitochondria account for the majority of oxygen consumption during aerobic exercise, the primary goal was to investigate differences in isolated muscle mitochondria between these species and to examine to what extent factors intrinsic to mitochondria may account for the behavior observed in the intact tissue and whole organism. First, maximal enzyme activities were assessed in sparrow and rat mitochondria. Citrate synthase and aspartate aminotransferase activity were higher in sparrow compared to rat mitochondria, while glutamate dehydrogenase activity was lower. Sparrow mitochondrial NAD-linked isocitrate dehydrogenase activity was dependent on phosphate, unlike the mammalian enzyme. Next, the rate of oxygen consumption (JO), electron transport chain (ETC) activity, and reactive oxygen species (ROS) production were assessed in intact mitochondria. Maximal rates of fat oxidation were lower than for carbohydrate in rat but not sparrow mitochondria. ETC activity was higher in sparrows, but no differences were found in ROS production between species. Finally, fuel selection and control of respiration at three rates between rest and maximum were assessed. Mitochondrial fuel oxidation and selection mirrored that of the whole body; in rat mitochondria the reliance on carbohydrate increased as the rate of oxygen consumption increased, whereas fat dominated under all conditions in the sparrow. These data indicate fuel selection, at least in part, can be modulated at the level of the mitochondrial matrix when multiple substrates are present at saturating levels. As an increase in matrix oxidation-reduction potential has been linked to a suppression of fat oxidation and high ROS production, the high ETC activity relative to dehydrogenase activity in avian compared to mammalian mitochondria may result in lower matrix oxidation-reduction potential, allowing fatty acid oxidation to proceed while also resulting in low ROS production in vivo.
ContributorsKuzmiak, Sarah (Author) / Willis, Wayne T (Thesis advisor) / Mandarino, Lawrence (Committee member) / Sweazea, Karen (Committee member) / Harrison, Jon (Committee member) / Gadau, Juergen (Committee member) / Arizona State University (Publisher)
Created2012
158113-Thumbnail Image.png
Description
The Chinese Construction Industry has grown to be one of the largest construction markets in the world within the last 10 years. The size of the Chinese Construction Industry is on par with many developed nations, despite it being a developing country. Despite its rapid growth, the productivity and profitability

The Chinese Construction Industry has grown to be one of the largest construction markets in the world within the last 10 years. The size of the Chinese Construction Industry is on par with many developed nations, despite it being a developing country. Despite its rapid growth, the productivity and profitability of the Chinese Construction Industry is low compared to similar sized construction industries (United States, United Kingdom, etc.). In addition to the low efficiency of the Chinese Construction Industry, there is minimal documentation available showing the performance of the Chinese Construction Industry (projects completed on time, on budget, and customer satisfaction ratings).

The purpose of this research is to investigate potential solutions that could address the poor efficiency and performance of the Chinese Construction Industry. This research is divided into three phases; first, a literature review to identify countries that have similar construction industries to the Chinese Construction Industry. The second phase is to compare the risks and identify solutions that are proposed to increase the performance of similar construction industries and the Chinese Construction Industry. The third phase is to create a survey from the literature-based information to validate the concepts with the Chinese Construction Industry professionals and stakeholders.
ContributorsChen, Yutian (Author) / Chong, Oswald (Thesis advisor) / Kashiwagi, Dean T. (Committee member) / Badger, Willliam (Committee member) / Arizona State University (Publisher)
Created2020
171936-Thumbnail Image.png
Description
Although Saudi Arabia is moving towards a sustainable future, Existing residential buildings in the country are extremely unsustainable. Therefore, there is a necessity for greening the existing residential building. Mostadam green rating systems was developed by the Saudi ministry of housing in 2019 to address the long-term sustainability vision in

Although Saudi Arabia is moving towards a sustainable future, Existing residential buildings in the country are extremely unsustainable. Therefore, there is a necessity for greening the existing residential building. Mostadam green rating systems was developed by the Saudi ministry of housing in 2019 to address the long-term sustainability vision in residential buildings in the country. By setting Mostadam requirements as an objective of the retrofit process, it will ensure that the building achieve sustainability. However, Mostadam is new and there is a lack of knowledge of implementing its requirements on existing buildings. The aim of this research is to develop a framework to green existing residential buildings in Saudi Arabia to achieve Mostadam energy and water minimum requirements. The framework was developed based on an extensive keyword-based search and an analysis of 92 relevant research. The process starts with assessing the building against the minimum requirements of energy and water of Mostadam. After that, optimization phase is conducted. Building information modelling is used in the optimization phase. Energy and water efficiency optimization measures are identified from the analysed literature. Revit is used in the base model authoring and Green building studio cloud is used to simulate the energy and water efficiency measures. Then, payback period is calculated for all the efficiency measured to assess the decision making. A case study of a villa in Riyadh, Saudi Arabia is provided. result shows that the implemented efficiency measures led to an increment of 37.5% in annual energy savings and 26.1% in the annual water savings. Results shows that the application of the proposed framework supports evaluating energy and water efficiency measures to implement it on the buildings to achieve Mostadam minimum energy and water requirements. Recommendations were made for future work to bridge the knowledge gap.
ContributorsMohamed, Sara Murad (Author) / Sullivan, Kenneth (Thesis advisor) / Chong, Oswald (Committee member) / Hurtado, Kristen (Committee member) / Arizona State University (Publisher)
Created2022
168450-Thumbnail Image.png
Description
As the construction industry in Saudi Arabia was on its way to thriving again. Their growth was due to the unprecedented volume of planned projects such as large-scale and unique projects. Suddenly, the world was faced with one of the most disrupting events in the last century which had a

As the construction industry in Saudi Arabia was on its way to thriving again. Their growth was due to the unprecedented volume of planned projects such as large-scale and unique projects. Suddenly, the world was faced with one of the most disrupting events in the last century which had a devastating impact on the construction industry specifically. This paper explores mainly the impact of the COVID-19 pandemic on construction projects in Saudi Arabia. Particularly, this paper explores how the pandemic and its related events contributed to the projects' schedule disturbances. This is because most of the projects rely on manpower and supply chains which were heavily disrupted due to the protective measures. For that, a study was conducted to evaluate the impact on the construction projects in Saudi Arabia, to what extent the schedule projects were affected, and what were the main reasons for the schedule delays. The research relied on a field survey and schedule analysis for 12 projects which resulted in identifying several causes of delays and the delayed durations that the projects in Saudi Arabia were facing. This research allows those in construction fields to identify the main causes of delays in order to avoid or minimize the impact of these issues on future projects.
ContributorsObeid, Muhammad Hasan Hani (Author) / Ariaratnam, Samuel (Thesis advisor) / El Asmar, Mounir (Committee member) / Chong, Oswald (Committee member) / Arizona State University (Publisher)
Created2021
193014-Thumbnail Image.png
Description
The consequences of failures from large-diameter water pipelines can be severe. Results can include significant property damage, damage to adjacent infrastructure such as roads and bridges resulting in transportation delays or shutdowns, adjacent structural damage to buildings resulting in loss of business, service disruption to a significant number of

The consequences of failures from large-diameter water pipelines can be severe. Results can include significant property damage, damage to adjacent infrastructure such as roads and bridges resulting in transportation delays or shutdowns, adjacent structural damage to buildings resulting in loss of business, service disruption to a significant number of customers, loss of water, costly emergency repairs, and even loss of life. The American Water Works Association’s (AWWA) 2020 “State of the Water Industry” report states the top issue facing the water industry since 2016 is aging infrastructure, with the second being financing for improvements. The industry must find innovative ways to extend asset life and reduce maintenance expenditures. While are many different assets comprise the drinking water industry, pipelines are a major component and often neglected because they are typically buried. Reliability Centered Maintenance (RCM) is a process used to determine the most effective maintenance strategy for an asset, with the ultimate goal being to establish the required function of the asset with the required reliability at the lowest operations and maintenance costs. The RCM philosophy considers Preventive Maintenance, Predictive Maintenance, Condition Based Monitoring, Reactive Maintenance, and Proactive Maintenance techniques in an integrated manner to increase the probability an asset will perform its designed function throughout its design life with minimal maintenance. In addition to determining maintenance tasks, the timely performance of those tasks is crucial. If performed too late an asset may fail; if performed too early, resources that may be used better elsewhere are expended. Utility agencies can save time and money by using RCM analysis for their drinking water infrastructure. This dissertation reviews industries using RCM, discusses the benefits of an RCM analysis, and goes through a case study of an RCM at a large aqueduct in the United States. The dissertation further discusses the consequence of failure of large diameter water pipelines and proposes a regression model to help agencies determine the optimum time to perform maintenance tasks on large diameter prestressed concrete pipelines using RCM analysis.
ContributorsGeisbush, James R (Author) / Ariaratnam, Samuel T (Thesis advisor) / Grau, David (Committee member) / Chong, Oswald (Committee member) / Arizona State University (Publisher)
Created2024
187379-Thumbnail Image.png
Description
The world faces significant environmental and social challenges due to high economic development, population growth, industrialization, rapid urbanization, and unsustainable consumption. Global communities are taking the necessary measures to confront these international challenges and applying sustainable development principles across all sectors. Construction is a critical driving instrument of economic activity,

The world faces significant environmental and social challenges due to high economic development, population growth, industrialization, rapid urbanization, and unsustainable consumption. Global communities are taking the necessary measures to confront these international challenges and applying sustainable development principles across all sectors. Construction is a critical driving instrument of economic activity, and to achieve sustainable development, it is vital to transform conventional construction into a more sustainable model. The research investigated sustainable construction perceptions in Kuwait, a rapidly growing country with a high volume of construction activities. Kuwait has ambitious plans to transition into a more sustainable economic development model, and the construction industry needs to align with these plans. This research aims to identify the characteristics of sustainable construction applications in the Kuwaiti construction market, such as awareness, current perceptions, drivers and barriers, and the construction regulations' impact. The research utilized a qualitative approach to answer research questions and deliver research objectives by conducting eleven Semi-structured interviews with experienced professionals in the Kuwaiti construction market to collect rich data that reflects insights and understandings of the Kuwaiti construction industry. The Thematic analysis of the data resulted in six themes and one sub-theme that presented reflections, insights, and perspectives on sustainable construction perceptions in the Kuwaiti construction market. The research findings reflected poor sustainable construction awareness and poor environmental and social application in the construction industry, the determinant role of construction regulations in promoting sustainable construction. and barriers and drivers to sustainable construction applications. The research concluded with answers to research questions, delivery of research objectives, and an explanation of sustainable construction perceptions in the Kuwaiti construction market.
Contributorsalsalem, mohammad salem (Author) / Duran, Melanie (Thesis advisor) / Chong, Oswald (Committee member) / Sullivan, Kenneth (Committee member) / Grau, David (Committee member) / Arizona State University (Publisher)
Created2023
187709-Thumbnail Image.png
Description
During the rapid growth of infrastructure projects globally, countries pay high environmental and social costs as a result of the impacts caused from utilizing the traditional open-cut utility installation method that still widely being used in Egypt. For that, it was essential to have alternatives to reduce these environmental impacts

During the rapid growth of infrastructure projects globally, countries pay high environmental and social costs as a result of the impacts caused from utilizing the traditional open-cut utility installation method that still widely being used in Egypt. For that, it was essential to have alternatives to reduce these environmental impacts and social costs; however, there are some obstacles that prevent the implementation and the realization of these alternatives.This research is conducted mainly to evaluate the environmental impacts of open-cut excavation vs. trenchless technology in Egypt, through two main methodologies. Firstly, a field survey that aims to measure knowledge of people working in the Egyptian construction industry of trenchless technology, and the harms caused from keeping utilizing open-cut for installing all kinds of underground utilities. In addition to investigating the reasons behind not relying on trenchless technology as a safe alternative for open-cut in Egypt. Furthermore, in order to compare the greenhouse gases emissions resulted from both open-cut vs trenchless technology, a real case study is applied quantifying the amounts of the resulted greenhouse gases from each method. The results show that greenhouse gases emissions generated from open-cut were extremely higher than that of horizontal directional drilling as a trenchless installation method.
ContributorsKhedr, Ahmed Mossad Saeed Hafez (Author) / Ariaratnam, Samuel (Thesis advisor) / El Asmar, Mounir (Committee member) / Chong, Oswald (Committee member) / Arizona State University (Publisher)
Created2023
156707-Thumbnail Image.png
Description
The United States building sector was the most significant carbon emission contributor (over 40%). The United States government is trying to decrease carbon emissions by enacting policies, but emissions increased by approximately 7 percent in the U.S. between 1990 and 2013. To reduce emissions, investigating the factors affecting carbon emissions

The United States building sector was the most significant carbon emission contributor (over 40%). The United States government is trying to decrease carbon emissions by enacting policies, but emissions increased by approximately 7 percent in the U.S. between 1990 and 2013. To reduce emissions, investigating the factors affecting carbon emissions should be a priority. Therefore, in this dissertation, this research examine the relationship between carbon emissions and the factors affecting them from macro and micro perspectives. From a macroscopic perspective, the relationship between carbon dioxide, energy resource consumption, energy prices, GDP (gross domestic product), waste generation, and recycling waste generation in the building and waste sectors has been verified. From a microscopic perspective, the impact of non-permanent electric appliances and stationary and non-stationary occupancy has been investigated. To verify the relationships, various kinds of statistical and data mining techniques were applied, such as the Granger causality test, linear and logarithmic correlation, and regression method. The results show that natural gas and electricity prices are higher than others, as coal impacts their consumption, and electricity and coal consumption were found to cause significant carbon emissions. Also, waste generation and recycling significantly increase and decrease emissions from the waste sector, respectively. Moreover, non-permanent appliances such as desktop computers and monitors consume a lot of electricity, and significant energy saving potential has been shown. Lastly, a linear relationship exists between buildings’ electricity use and total occupancy, but no significant relationship exists between occupancy and thermal loads, such as cooling and heating loads. These findings will potentially provide policymakers with a better understanding of and insights into carbon emission manipulation in the building sector.
ContributorsLee, Seungtaek (Author) / Chong, Oswald (Thesis advisor) / Sullivan, Kenneth (Committee member) / Tang, Pingbo (Committee member) / Arizona State University (Publisher)
Created2018
154130-Thumbnail Image.png
Description
Given the importance of buildings as major consumers of resources worldwide, several organizations are working avidly to ensure the negative impacts of buildings are minimized. The U.S. Green Building Council's (USGBC) Leadership in Energy and Environmental Design (LEED) rating system is one such effort to recognize buildings that are designed

Given the importance of buildings as major consumers of resources worldwide, several organizations are working avidly to ensure the negative impacts of buildings are minimized. The U.S. Green Building Council's (USGBC) Leadership in Energy and Environmental Design (LEED) rating system is one such effort to recognize buildings that are designed to achieve a superior performance in several areas including energy consumption and indoor environmental quality (IEQ). The primary objectives of this study are to investigate the performance of LEED certified facilities in terms of energy consumption and occupant satisfaction with IEQ, and introduce a framework to assess the performance of LEED certified buildings.

This thesis attempts to achieve the research objectives by examining the LEED certified buildings on the Arizona State University (ASU) campus in Tempe, AZ, from two complementary perspectives: the Macro-level and the Micro-level. Heating, cooling, and electricity data were collected from the LEED-certified buildings on campus, and their energy use intensity was calculated in order to investigate the buildings' actual energy performance. Additionally, IEQ occupant satisfaction surveys were used to investigate users' satisfaction with the space layout, space furniture, thermal comfort, indoor air quality, lighting level, acoustic quality, water efficiency, cleanliness and maintenance of the facilities they occupy.

From a Macro-level perspective, the results suggest ASU LEED buildings consume less energy than regional counterparts, and exhibit higher occupant satisfaction than national counterparts. The occupant satisfaction results are in line with the literature on LEED buildings, whereas the energy results contribute to the inconclusive body of knowledge on energy performance improvements linked to LEED certification. From a Micro-level perspective, data analysis suggest an inconsistency between the LEED points earned for the Energy & Atmosphere and IEQ categories, on one hand, and the respective levels of energy consumption and occupant satisfaction on the other hand. Accordingly, this study showcases the variation in the performance results when approached from different perspectives. This contribution highlights the need to consider the Macro-level and Micro-level assessments in tandem, and assess LEED building performance from these two distinct but complementary perspectives in order to develop a more comprehensive understanding of the actual building performance.
ContributorsChokor, Abbas (Author) / El Asmar, Mounir (Thesis advisor) / Chong, Oswald (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2015