Matching Items (16)
Filtering by

Clear all filters

151797-Thumbnail Image.png
Description
The study of bacterial resistance to antimicrobial peptides (AMPs) is a significant area of interest as these peptides have the potential to be developed into alternative drug therapies to combat microbial pathogens. AMPs represent a class of host-mediated factors that function to prevent microbial infection of their host and serve

The study of bacterial resistance to antimicrobial peptides (AMPs) is a significant area of interest as these peptides have the potential to be developed into alternative drug therapies to combat microbial pathogens. AMPs represent a class of host-mediated factors that function to prevent microbial infection of their host and serve as a first line of defense. To date, over 1,000 AMPs of various natures have been predicted or experimentally characterized. Their potent bactericidal activities and broad-based target repertoire make them a promising next-generation pharmaceutical therapy to combat bacterial pathogens. It is important to understand the molecular mechanisms, both genetic and physiological, that bacteria employ to circumvent the bactericidal activities of AMPs. These understandings will allow researchers to overcome challenges posed with the development of new drug therapies; as well as identify, at a fundamental level, how bacteria are able to adapt and survive within varied host environments. Here, results are presented from the first reported large scale, systematic screen in which the Keio collection of ~4,000 Escherichia coli deletion mutants were challenged against physiologically significant AMPs to identify genes required for resistance. Less than 3% of the total number of genes on the E. coli chromosome was determined to contribute to bacterial resistance to at least one AMP analyzed in the screen. Further, the screen implicated a single cellular component (enterobacterial common antigen, ECA) and a single transporter system (twin-arginine transporter, Tat) as being required for resistance to each AMP class. Using antimicrobial resistance as a tool to identify novel genetic mechanisms, subsequent analyses were able to identify a two-component system, CpxR/CpxA, as a global regulator in bacterial resistance to AMPs. Multiple previously characterized CpxR/A members, as well as members found in this study, were identified in the screen. Notably, CpxR/A was found to transcriptionally regulate the gene cluster responsible for the biosynthesis of the ECA. Thus, a novel genetic mechanism was uncovered that directly correlates with a physiologically significant cellular component that appears to globally contribute to bacterial resistance to AMPs.
ContributorsWeatherspoon-Griffin, Natasha (Author) / Shi, Yixin (Thesis advisor) / Clark-Curtiss, Josephine (Committee member) / Misra, Rajeev (Committee member) / Nickerson, Cheryl (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2013
150658-Thumbnail Image.png
Description
V(D)J recombination is responsible for generating an enormous repertoire of immunoglobulins and T cell receptors, therefore it is a centerpiece to the formation of the adaptive immune system. The V(D)J recombination process proceeds through two steps, site-specific cleavage at RSS (Recombination Signal Sequence) site mediated by the RAG recombinase (RAG1/2)

V(D)J recombination is responsible for generating an enormous repertoire of immunoglobulins and T cell receptors, therefore it is a centerpiece to the formation of the adaptive immune system. The V(D)J recombination process proceeds through two steps, site-specific cleavage at RSS (Recombination Signal Sequence) site mediated by the RAG recombinase (RAG1/2) and the subsequent imprecise resolution of the DNA ends, which is carried out by the ubiquitous non-homologous end joining pathway (NHEJ). The V(D)J recombination reaction is obliged to be tightly controlled under all circumstances, as it involves generations of DNA double strand breaks, which are considered the most dangerous lesion to a cell. Multifaceted regulatory mechanisms have been evolved to create great diversity of the antigen receptor repertoire while ensuring genome stability. The RAG-mediated cleavage reaction is stringently regulated at both the pre-cleavage stage and the post-cleavage stage. Specifically, RAG1/2 first forms a pre-cleavage complex assembled at the boarder of RSS and coding flank, which ensures the appropriate DNA targeting. Subsequently, this complex initiates site-specific cleavage, generating two types of double stranded DNA breaks, hairpin-ended coding ends (HP-CEs) and blunt signal ends (SEs). After the cleavage, RAG1/2 proteins bind and retain the recombination ends to form post-cleavage complexes (PCC), which collaborates with the NHEJ machinery for appropriate transfer of recombination ends to NHEJ for proper end resolution. However, little is known about the molecular basis of this collaboration, partly attributed to the lack of sensitive assays to reveal the interaction of PCC with HP-CEs. Here, for the first time, by using two complementary fluorescence-based techniques, fluorescence anisotropy and fluorescence resonance energy transfer (FRET), I managed to monitor the RAG1/2-catalyzed cleavage reaction in real time, from the pre-cleavage to the post-cleavage stages. By examining the dynamic fluorescence changes during the RAG-mediated cleavage reactions, and by manipulating the reaction conditions, I was able to characterize some fundamental properties of RAG-DNA interactions before and after cleavage. Firstly, Mg2+, known as a physiological cofactor at the excision step, also promotes the HP-CEs retention in the RAG complex after cleavage. Secondly, the structure of pre-cleavage complex may affect the subsequent collaborations with NHEJ for end resolution. Thirdly, the non-core region of RAG2 may have differential influences on the PCC retention of HP-CEs and SEs. Furthermore, I also provide the first evidence of RAG1-mediated regulation of RAG2. Our study provides important insights into the multilayered regulatory mechanisms, in modulating recombination events in developing lymphocytes and paves the way for possible development of detection and diagnotic markers for defective recombination events that are often associated immunodeficiency and/or lymphoid malignancy.
ContributorsWang, Guannan (Author) / Chang, Yung (Thesis advisor) / Levitus, Marcia (Committee member) / Misra, Rajeev (Committee member) / Anderson, Karen (Committee member) / Arizona State University (Publisher)
Created2012
151143-Thumbnail Image.png
Description
Intrinsic antibiotic resistance is of growing concern in modern medical treatment. The primary action of multidrug resistant strains is through over-expression of active transporters which recognize a broad range of antibiotics. In Escherichia coli, the TolC-AcrAB complex has become a model system to understand antibiotic efflux. While the structures of

Intrinsic antibiotic resistance is of growing concern in modern medical treatment. The primary action of multidrug resistant strains is through over-expression of active transporters which recognize a broad range of antibiotics. In Escherichia coli, the TolC-AcrAB complex has become a model system to understand antibiotic efflux. While the structures of these three proteins (and many of their homologs) are known, the exact mechanisms of interaction are still poorly understood. By mutational analysis of the TolC turn 1 residues, a drug hypersensitive mutant has been identified which is defective in functional interactions with AcrA and AcrB. Antibiotic resistant revertants carry alterations in both TolC and AcrA act by stabilizing functional complex assembly and opening of the TolC aperture, as monitored by stability of a labile TolC mutant and sensitivity to vancomycin, respectively. Alterations in the AcrB periplasmic hairpin loops lead to a similar antibiotic hypersensitivity phenotype and destabilized complex assembly. Likewise, alterations in TolC which constitutively open the aperture suppress this antibiotic sensitivity. Suppressor alterations in AcrA and AcrB partially restore antibiotic resistance by mediating stability of the complex. The AcrA suppressor alterations isolated in these studies map to the three crystallized domains and it is concluded they alter the AcrA conformation such that it is permanently fixed in an active state, which wild type only transiently goes through when activated by AcrB. Through this genetic evidence, a direct interaction between TolC and AcrB which is stabilized by AcrA has been proposed. In addition to stabilizing the interactions between TolC and AcrB, AcrA is also responsible for triggering opening of the TolC aperture by mediating energy flow from AcrB to TolC. By permanently altering the conformation of AcrA, suppressor mutants allow defective TolC or AcrB mutants to regain functional interactions lost by the initial mutations. The data provide the genetic proof for direct interaction between AcrB and that AcrA mediated opening of TolC requires AcrB as a scaffold.
ContributorsWeeks, Jon William (Author) / Misra, Rajeev (Thesis advisor) / Stout, Valerie (Committee member) / Shi, Yixin (Committee member) / Clark-Curtiss, Josephine (Committee member) / Arizona State University (Publisher)
Created2012
149369-Thumbnail Image.png
Description
Protein folding is essential in all cells, and misfolded proteins cause many diseases. In the Gram-negative bacterium Escherichia coli, protein folding must be carefully controlled during envelope biogenesis to maintain an effective permeability barrier between the cell and its environment. This study explores the relationship between envelope biogenesis

Protein folding is essential in all cells, and misfolded proteins cause many diseases. In the Gram-negative bacterium Escherichia coli, protein folding must be carefully controlled during envelope biogenesis to maintain an effective permeability barrier between the cell and its environment. This study explores the relationship between envelope biogenesis and cell stress, and the return to homeostasis during envelope stress. A major player in envelope biogenesis and stress response is the periplasmic protease DegP. Work presented here explores the growth phenotypes of cells lacking degP, including temperature sensitivity and lowered cell viability. Intriguingly, these cells also accumulate novel cytosolic proteins in their envelope not present in wild-type. Association of novel proteins was found to be growth time- and temperature-dependent, and was reversible, suggesting a dynamic nature of the envelope stress response. Two-dimensional gel electrophoresis of envelopes followed by mass spectrometry identified numerous cytoplasmic proteins, including the elongation factor/chaperone TufA, illuminating a novel cytoplasmic response to envelope stress. A suppressor of temperature sensitivity was characterized which corrects the defect caused by the lack of degP. Through random Tn10 insertion analysis, aribitrarily-primed polymerase chain reaction and three-factor cross, the suppressor was identified as a novel duplication-truncation of rpoE, here called rpoE'. rpoE' serves to subtly increase RpoE levels in the cell, resulting in a slight elevation of the SigmaE stress response. It does so without significantly affecting steady-state levels of outer membrane proteins, but rather by increasing proteolysis in the envelope independently of DegP. A multicopy suppressor of temperature sensitivity in strains lacking degP and expressing mutant OmpC proteins, yfgC, was characterized. Bioinformatics suggests that YfgC is a metalloprotease, and mutation of conserved domains resulted in mislocalization of the protein. yfgC-null mutants displayed additive antibiotic sensitivity and growth defects when combined with null mutation in another periplasmic chaperone, surA, suggesting that the two act in separate pathways during envelope biogenesis. Overexpression of YfgC6his altered steady-state levels of mutant OmpC in the envelope, showing a direct relationship between it and a major constituent of the envelope. Curiously, purified YfgC6his showed an increased propensity for crosslinking in mutant, but not in a wild-type, OmpC background.
ContributorsLeiser, Owen Paul (Author) / Misra, Rajeev (Thesis advisor) / Jacobs, Bertram (Committee member) / Chang, Yung (Committee member) / Stout, Valerie (Committee member) / Arizona State University (Publisher)
Created2010
149541-Thumbnail Image.png
Description
Like most other phototrophic organisms the cyanobacterium Synechocystis sp. PCC 6803 produces carotenoids. These pigments often bind to proteins and assume various functions in light harvesting, protection from reactive oxygen species (ROS) and protein stabilization. One hypothesis was that carotenoids bind to the surface (S-)layer protein. In this work the

Like most other phototrophic organisms the cyanobacterium Synechocystis sp. PCC 6803 produces carotenoids. These pigments often bind to proteins and assume various functions in light harvesting, protection from reactive oxygen species (ROS) and protein stabilization. One hypothesis was that carotenoids bind to the surface (S-)layer protein. In this work the Synechocystis S-layer protein was identified as Sll1951 and the effect on the carotenoid composition of this prokaryote by disruption of sll1951 was studied. Loss of the S-layer, which was demonstrated by electron microscopy, did not result in loss of carotenoids or changes in the carotenoid profile of the mutant, which was shown by HPLC and protein analysis. Although Δsll1951 was more susceptible to osmotic stress than the wild type, the general viability of the mutant remained unaffected. In a different study a combination of mutants having single or multiple deletions of putative carotenoid cleavage dioxygenase (CCD) genes was created. CCDs are presumed to play a role in the breakdown of carotenoids or apo-carotenoids. The carotenoid profiles of the mutants that were grown under conditions of increased reactive oxygen species were analyzed by HPLC. Pigment lifetimes of all strains were estimated by 13C-labeling. Carotenoid composition and metabolism were similar in all strains leading to the conclusion that the deleted CCDs do not affect carotenoid turnover in Synechocystis. The putative CCDs either do not fulfill this function in cyanobacteria or alternative pathways for carotenoid degradation exist. Finally, slr0941, a gene of unknown function but a conserved genome position in many cyanobacteria downstream of the δ-carotene desaturase, was disrupted. Initially, the mutant strain was impaired in growth but displayed a rather normal carotenoid content and composition, but an apparent second-site mutation occurred infrequently that restored growth rates and caused an accumulation of carotenoid isomers not found in the wild type. Based on the obtained data a role of the slr0941 gene in carotenoid binding/positioning for isomerization and further conversion to mature carotenoids is suggested.
ContributorsTrautner, Christoph (Author) / Vermaas, Willem Fj (Thesis advisor) / Chandler, Douglas E. (Committee member) / Misra, Rajeev (Committee member) / Bingham, Scott E (Committee member) / Arizona State University (Publisher)
Created2011
190834-Thumbnail Image.png
Description
The FOF1 ATP synthase is responsible for generating the majority of adenosine triphosphate (ATP) in almost all organisms on Earth. A major unresolved question is the mechanism of the FO motor that converts the transmembrane flow of protons into rotation that drives ATP synthesis. Using single-molecule gold nanorod experiments, rotation

The FOF1 ATP synthase is responsible for generating the majority of adenosine triphosphate (ATP) in almost all organisms on Earth. A major unresolved question is the mechanism of the FO motor that converts the transmembrane flow of protons into rotation that drives ATP synthesis. Using single-molecule gold nanorod experiments, rotation of individual FOF1 were observed to measure transient dwells (TDs). TDs occur when the FO momentarily halts the ATP hydrolysis rotation by the F1-ATPase. The work presented here showed increasing TDs with decreasing pH, with calculated pKa values of 5.6 and 7.5 for wild-type (WT) Escherichia coli (E. coli) subunit-a proton input and output half-channels, respectively. This is consistent with the conclusion that the periplasmic proton half-channel is more easily protonated than the cytoplasmic half-channel. Mutation in one proton half-channel affected the pKa values of both half-channels, suggesting that protons flow through the FO motor via the Grotthuss mechanism. The data revealed that 36° stepping of the E. coli FO subunit-c ring during ATP synthesis consists of an 11° step caused by proton translocations between subunit-a and the c-ring, and a 25° step caused by the electrostatic interaction between the unprotonated c-subunit and the aR210 residue in subunit-a. The occurrence of TDs fit to the sum of three Gaussian curves, which suggested that the asymmetry between the FO and F1 motors play a role in the mechanism behind the FOF1 rotation. Replacing the inner (N-terminal) helix of E. coli c10-ring with sequences derived from c8 to c17-ring sequences showed expression and full assembly of FOF1. Decrease in anticipated c-ring size resulted in increased ATP synthesis activity, while increase in c-ring size resulted in decreased ATP synthesis activity, loss of Δψ-dependence to synthesize ATP, decreased ATP hydrolysis activity, and decreased ACMA quenching activity. Low levels of ATP synthesis by the c12 and c15-ring chimeras are consistent with the role of the asymmetry between the FO and F1 motors that affects ATP synthesis rotation. Lack of a major trend in succinate-dependent growth rates of the chimeric E. coli suggest cellular mechanisms that compensates for the c-ring modification.
ContributorsYanagisawa, Seiga (Author) / Frasch, Wayne D (Thesis advisor) / Misra, Rajeev (Committee member) / Redding, Kevin (Committee member) / Singharoy, Abhishek (Committee member) / Wideman, Jeremy (Committee member) / Arizona State University (Publisher)
Created2023
161803-Thumbnail Image.png
Description
When exposed to abiotic stresses, Escherichia coli responds by activating various stress-mitigating pathways. Initiation of stress responses partially relies on the RNA polymerase (RNAP) to transcribe genes necessary to tolerate various stresses, including nutritional deprivation and heat exposure. Consequently, RNAP mutations impacting transcription can have pleiotropic effects on the cell

When exposed to abiotic stresses, Escherichia coli responds by activating various stress-mitigating pathways. Initiation of stress responses partially relies on the RNA polymerase (RNAP) to transcribe genes necessary to tolerate various stresses, including nutritional deprivation and heat exposure. Consequently, RNAP mutations impacting transcription can have pleiotropic effects on the cell physiology and the ability to tolerate stress. Previously, while investigating antibiotic-resistant mutations arising in the absence of major antibiotic efflux pumps, four mutants containing alterations in the RNA polymerase beta subunit gene (rpoB) were isolated (Cho & Misra, 2021). Of the four mutants, one (RpoB58) was found to be thermotolerant, permitting homogenous, stable growth at temperatures up to 47°C, whereas the parental rpoB wildtype (RpoB-WT) was only able to do so up to 45°C. Additionally, RNA-Seq analysis indicated that the RpoB58 mutant had a ‘stringent’ profile that is normally seen under nutritionally deprived conditions. To better understand the regulatory pathways used to confer stress tolerance, this thesis sought to further characterize and investigate the intracellular mechanisms contributing to the thermotolerance conferred by the rpoB58 mutation. The RpoB58 mutant was found to be significantly more tolerant to both continuous heat stress (up to 47°C) and short-term heat (55°C) and ethanol (25%) exposure. Additionally, the RpoB58 mutant tolerated the absence or depletion of major heat shock chaperones DnaJ and DnaK that normally play key roles during temperature stresses by reducing protein misfolding. RNA-Seq data and reporter gene assays showed reduced expression of genes involved in protein synthesis. A similar reduction in the expression of protein synthesis genes was observed when cells were grown in growth-limiting minimal media. Interestingly, growth in minimal medium rescued the ΔdnaJ defect like the rpoB58 mutation. Based on these data, it was proposed that a decrease in protein synthesis, whether caused by rpoB58 or the growth medium, would result in less growth-inhibiting protein misfolding and aggregation, especially at higher growth temperatures where proteins are susceptible to denaturation and aggregation. As a result of these investigations, a possible mechanistic insight was provided as to how the rpoB58 mutation confers thermotolerance.
ContributorsYeh, Melody (Author) / Misra, Rajeev RM (Thesis advisor) / Wang, Xuan XW (Committee member) / Muralinath, Maneesha MM (Committee member) / Arizona State University (Publisher)
Created2021
187821-Thumbnail Image.png
Description
In this work, secretion of free fatty acids (FFAs) and ω-hydroxy FFAs wasachieved in the model cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis), and FFAs were detected by a novel fluorescence assay. Current methods of detecting FFA concentrations, including HPLC-based and GC-based methods or enzyme-based kits, have hindered research advancement due to their laborious

In this work, secretion of free fatty acids (FFAs) and ω-hydroxy FFAs wasachieved in the model cyanobacterium Synechocystis sp. PCC 6803 (Synechocystis), and FFAs were detected by a novel fluorescence assay. Current methods of detecting FFA concentrations, including HPLC-based and GC-based methods or enzyme-based kits, have hindered research advancement due to their laborious and/or expensive nature. The work herein establishes a novel, rapid, fluorescence-based assay for detecting total FFA concentrations secreted by Synechocystis FFA secretion strains. The novel FFA-detection assay demonstrates the efficacy of using Nile Red as a fluorescent reporter for laurate or palmitate at concentrations up to 500 µM in the presence of cationic surfactants. Total FFA concentrations in Synechocystis supernatants quantified by the novel, Nile Red fluorescence-based assay are demonstrated herein to be highly correlative to total FFA concentrations quantified by LC-MS; this correlation was seen in supernatant samples of wild type Synechocystis and Synechocystis FFA secretion strains, both in 96-well plates and 30-mL, aerated culture tubes. This work also establishes the expression of a cytochrome P450 fusion enzyme, CYP153A-CPRmut, or a monooxygenase system from Pseudomonas putida GPo1, AlkBGT, in FFA secretion strains of Synechocystis for the generation of ω-hydroxy laurate from laurate. After finding greatly increased ω-hydroxylation activity of CYP153A-CPRmut with concurrent superoxide dismutase and catalase overexpression, 55 or 1.5 µM of ω-hydroxy laurate were produced over five days by Synechocystis strains expressing CYP153A-CPRmut or AlkBGT, respectively. As further indication of the presence of reactive oxygen species affecting ω-hydroxy laurate production with Synechocystis strains expressing CYP153A-CPRmut, concentrations of ω-hydroxy laurate in the supernatant increased over two-fold in the presence of 250 µM of the anti-oxidant, methionine, in bench-scale cultures and in 96-well plate cultures. Additionally, a mutation at the 55th amino acid position in AlkB (tryptophan to cysteine; AlkBW55C), resulted in a more than two-fold shift in AlkB’s substrate preference from decanoate towards the desired substrate, laurate. As a result, Synechocystis expressing AlkBW55C could produce 5.9 µM ω-hydroxy laurate and 2.0 µM dodecanedioic acid over five days of growth.
ContributorsAshe, Christopher (Author) / Vermaas, Willem Fj (Thesis advisor, Committee member) / Wang, Xuan (Committee member) / Nielsen, David R (Committee member) / Misra, Rajeev (Committee member) / Arizona State University (Publisher)
Created2023
189215-Thumbnail Image.png
Description
Polymers have played a pivotal role in building modern society. Polymers can be classified as synthetic and natural polymers. Accumulation of both synthetic and natural polymer waste leads to environmental pollution. This dissertation aims at developing one-pot bioprocesses for a breakdown of natural polymers like cellulose, and hemicellulose and synthetic

Polymers have played a pivotal role in building modern society. Polymers can be classified as synthetic and natural polymers. Accumulation of both synthetic and natural polymer waste leads to environmental pollution. This dissertation aims at developing one-pot bioprocesses for a breakdown of natural polymers like cellulose, and hemicellulose and synthetic polymers like polyethylene terephthalate (PET). First, a one-pot process was developed for hemicellulose breakdown. A signal peptide library of native SEC pathway signal peptides was developed for efficient secretion of endoxylanse enzyme. Furthermore, in situ, the process was successfully created for hemicellulose to xylose with the highest reported xylose titer of 7.1 g/L. In addition, E. coli: B. subtilis coculture bioprocess was developed to produce succinate, ethanol, and lactate from hemicellulose in one pot process. Second, a one-pot process was developed for cellulose breakdown. In vitro enzyme assays were used to select SEC pathway signal peptides for endoglucanase and glucosidase secretion. Then, the breakdown of carboxymethyl cellulose (CMC), a cellulose derivative, was conducted in in situ conditions. U-13C fingerprinting study showed carbon enrichment from CMC when cultures were cofed with CMC and [U-13C] glucose. Further, Whatman filter paper sheets showed a change in shape in recombinant cocultures. SEM images showed continuous orientation in the case of two enzymes confirmed by fast Fourier transform (FFT), suggesting higher crystallinity of residues. Similarly, in microcrystalline cellulose breakdown in in situ conditions, a 72% reduction of avicel cellulose was achieved in a one pot bioprocess. SEM images revealed valleys and crevices on residues of coculture compared to smoother surfaces in monoculture residues pressing the importance of the synergistic activity of enzymes. Finally, one pot deconstruction process was developed for synthetic polymer PET. First, the PET hydrolase secretion strain was developed by selecting a signal peptide library. The first bis(2-hydroxyethyl) terephthalate (BHET) consolidated bioprocess was developed, which produced a terephthalic acid titer of 7.4 g/L. PET breakdown was successfully demonstrated in in vitro conditions with a TPA titer of 4 g/L. Furthermore, PET breakdown was successfully demonstrated in in situ conditions. Consolidated bioprocesses can be an invaluable approach to waste utilization and making cost-effective processes.
ContributorsMhatre, Apurv (Author) / Varman, Arul (Thesis advisor) / Nielsen, David (Committee member) / Misra, Rajeev (Committee member) / Nannenga, Brent (Committee member) / Torres, Cesar (Committee member) / Arizona State University (Publisher)
Created2023
193397-Thumbnail Image.png
Description
Reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and hydroxyl radicals occur naturally as a byproduct of aerobic respiration. To mitigate damages caused by ROS, Escherichia coli employs defenses including two cytosolic superoxide dismutases (SODs), which convert superoxide to hydrogen peroxide. Deletion of both sodA and sodB, the genes coding

Reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and hydroxyl radicals occur naturally as a byproduct of aerobic respiration. To mitigate damages caused by ROS, Escherichia coli employs defenses including two cytosolic superoxide dismutases (SODs), which convert superoxide to hydrogen peroxide. Deletion of both sodA and sodB, the genes coding for the cytosolic SOD enzymes, results in a strain that is unable to grow on minimal medium without amino acid supplementation. Additionally, deletion of both cytosolic SOD enzymes in a background containing the relA1 allele, an inactive version of the relA gene that contributes to activation of stringent response by amino acid starvation, results in a strain that is unable to grow aerobically, even on rich medium. These observations point to a relationship between the stringent response and oxidative stress. To gain insight into this relationship, suppressors were isolated by growing the ∆sodAB relA1 cells aerobically on rich medium, and seven suppressors were further examined to characterize distinct colony sizes and temperature sensitivity phenotypes. In three of these suppressor-containing strains, the relA1 allele was successfully replaced by the wild type relA allele to allow further study in aerobic conditions. None of those three suppressors were found to increase tolerance to exogenous superoxides produced by paraquat, which shows that these mutations only overcome the superoxide buildup that naturally occurs from deletion of SODs. Because each of these suppressors had unique phenotypes, it is likely that they confer tolerance to SOD-dependent superoxide buildup by different mechanisms. Two of these three suppressors have been sent for whole-genome sequencing to identify the location of the suppressor mutation and determine the mechanism by which they confer superoxide tolerance.
ContributorsFlake, Melissa (Author) / Misra, Rajeev (Thesis advisor) / Shah, Dhara (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2024