Matching Items (205)
Filtering by

Clear all filters

149998-Thumbnail Image.png
Description
As the 3rd generation solar cell, quantum dot solar cells are expected to outperform the first 2 generations with higher efficiency and lower manufacture cost. Currently the main problems for QD cells are the low conversion efficiency and stability. This work is trying to improve the reliability as well as

As the 3rd generation solar cell, quantum dot solar cells are expected to outperform the first 2 generations with higher efficiency and lower manufacture cost. Currently the main problems for QD cells are the low conversion efficiency and stability. This work is trying to improve the reliability as well as the device performance by inserting an interlayer between the metal cathode and the active layer. Titanium oxide and a novel nitrogen doped titanium oxide were compared and TiOxNy capped device shown a superior performance and stability to TiOx capped one. A unique light anneal effect on the interfacial layer was discovered first time and proved to be the trigger of the enhancement of both device reliability and efficiency. The efficiency was improved by 300% and the device can retain 73.1% of the efficiency with TiOxNy when normal device completely failed after kept for long time. Photoluminescence indicted an increased charge disassociation rate at TiOxNy interface. External quantum efficiency measurement also inferred a significant performance enhancement in TiOxNy capped device, which resulted in a higher photocurrent. X-ray photoelectron spectrometry was performed to explain the impact of light doping on optical band gap. Atomic force microscopy illustrated the effect of light anneal on quantum dot polymer surface. The particle size is increased and the surface composition is changed after irradiation. The mechanism for performance improvement via a TiOx based interlayer was discussed based on a trap filling model. Then Tunneling AFM was performed to further confirm the reliability of interlayer capped organic photovoltaic devices. As a powerful tool based on SPM technique, tunneling AFM was able to explain the reason for low efficiency in non-capped inverted organic photovoltaic devices. The local injection properties as well as the correspondent topography were compared in organic solar cells with or without TiOx interlayer. The current-voltage characteristics were also tested at a single interested point. A severe short-circuit was discovered in non capped devices and a slight reverse bias leakage current was also revealed in TiOx capped device though tunneling AFM results. The failure reason for low stability in normal devices was also discussed comparing to capped devices.
ContributorsYu, Jialin (Author) / Jabbour, Ghassan E. (Thesis advisor) / Alford, Terry L. (Thesis advisor) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2011
Description
The purpose of this project is to introduce Bryan Johanson's composition for two guitars, 13 Ways of Looking at 12 Strings, and present an authoritative recording appropriate for publishing. This fifty-minute piece represents a fascinating suite in thirteen movements. The author of this project performed both guitar parts, recorded them

The purpose of this project is to introduce Bryan Johanson's composition for two guitars, 13 Ways of Looking at 12 Strings, and present an authoritative recording appropriate for publishing. This fifty-minute piece represents a fascinating suite in thirteen movements. The author of this project performed both guitar parts, recorded them separately in a music studio, then mixed them together into one recording. This document focuses on the critical investigation and description of the piece with a brief theoretical analysis, a discussion of performance difficulties, and guitar preparation. The composer approved the use and the scope of this project. Bryan Johanson is one of the leading contemporary composers for the guitar today. 13 Ways of Looking at 12 Strings is a unique guitar dictionary that takes us from Bach to Hendrix and highlights the unique capabilities of the instrument. It utilizes encoded messages, glass slides, metal mutes, explosive "riffs," rhythmic propulsion, improvisation, percussion, fugual writing, and much more. It has a great potential to make the classical guitar attractive to wider audiences, not limited only to guitarists and musicians. The main resources employed in researching this document are existing recordings of Johanson's other compositions and documentation of his personal views and ideas. This written document uses the composer's prolific and eclectic compositional output in order to draw conclusions and trace motifs. This project is a significant and original contribution in expanding the guitar's repertoire, and it uniquely contributes to bringing forth a significant piece of music.
ContributorsSavic, Nenad (Author) / Koonce, Frank (Thesis advisor) / Rotaru, Catalin (Committee member) / McLin, Katherine (Committee member) / Feisst, Sabine (Committee member) / Landschoot, Thomas (Committee member) / Arizona State University (Publisher)
Created2011
150400-Thumbnail Image.png
Description
Semiconductor nanowires are featured by their unique one-dimensional structure which makes them promising for small scale electronic and photonic device applications. Among them, III-V material nanowires are particularly outstanding due to their good electronic properties. In bulk, these materials reveal electron mobility much higher than conventional silicon based devices, for

Semiconductor nanowires are featured by their unique one-dimensional structure which makes them promising for small scale electronic and photonic device applications. Among them, III-V material nanowires are particularly outstanding due to their good electronic properties. In bulk, these materials reveal electron mobility much higher than conventional silicon based devices, for example at room temperature, InAs field effect transistor (FET) has electron mobility of 40,000 cm2/Vs more than 10 times of Si FET. This makes such materials promising for high speed nanowire FETs. With small bandgap, such as 0.354 eV for InAs and 1.52 eV for GaAs, it does not need high voltage to turn on such devices which leads to low power consumption devices. Another feature of direct bandgap allows their applications of optoelectronic devices such as avalanche photodiodes. However, there are challenges to face up. Due to their large surface to volume ratio, nanowire devices typically are strongly affected by the surface states. Although nanowires can be grown into single crystal structure, people observe crystal defects along the wires which can significantly affect the performance of devices. In this work, FETs made of two types of III-V nanowire, GaAs and InAs, are demonstrated. These nanowires are grown by catalyst-free MOCVD growth method. Vertically nanowires are transferred onto patterned substrates for coordinate calibration. Then electrodes are defined by e-beam lithography followed by deposition of contact metals. Prior to metal deposition, however, the substrates are dipped in ammonium hydroxide solution to remove native oxide layer formed on nanowire surface. Current vs. source-drain voltage with different gate bias are measured at room temperature. GaAs nanowire FETs show photo response while InAs nanowire FETs do not show that. Surface passivation is performed on GaAs FETs by using ammonium surfide solution. The best results on current increase is observed with around 20-30 minutes chemical treatment time. Gate response measurements are performed at room temperature, from which field effect mobility as high as 1490 cm2/Vs is extracted for InAs FETs. One major contributor for this is stacking faults defect existing along nanowires. For InAs FETs, thermal excitations observed from temperature dependent results which leads us to investigate potential barriers.
ContributorsLiang, Hanshuang (Author) / Yu, Hongbin (Thesis advisor) / Ferry, David (Committee member) / Tracy, Clarence (Committee member) / Arizona State University (Publisher)
Created2011
150360-Thumbnail Image.png
Description
A workload-aware low-power neuromorphic controller for dynamic power and thermal management in VLSI systems is presented. The neuromorphic controller predicts future workload and temperature values based on the past values and CPU performance counters and preemptively regulates supply voltage and frequency. System-level measurements from stateof-the-art commercial microprocessors are used to

A workload-aware low-power neuromorphic controller for dynamic power and thermal management in VLSI systems is presented. The neuromorphic controller predicts future workload and temperature values based on the past values and CPU performance counters and preemptively regulates supply voltage and frequency. System-level measurements from stateof-the-art commercial microprocessors are used to get workload, temperature and CPU performance counter values. The controller is designed and simulated using circuit-design and synthesis tools. At device-level, on-chip planar inductors suffer from low inductance occupying large chip area. On-chip inductors with integrated magnetic materials are designed, simulated and fabricated to explore performance-efficiency trade offs and explore potential applications such as resonant clocking and on-chip voltage regulation. A system level study is conducted to evaluate the effect of on-chip voltage regulator employing magnetic inductors as the output filter. It is concluded that neuromorphic power controller is beneficial for fine-grained per-core power management in conjunction with on-chip voltage regulators utilizing scaled magnetic inductors.
ContributorsSinha, Saurabh (Author) / Cao, Yu (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Yu, Hongbin (Committee member) / Christen, Jennifer B. (Committee member) / Arizona State University (Publisher)
Created2011
149951-Thumbnail Image.png
Description
This study examined attitudes and perspectives of classroom guitar students toward the reading of staff notation in music. The purpose of this qualitative research was to reveal these perceptions in the student's own words, and compare them to those of orchestra and band students of comparable experience. Forty-seven students from

This study examined attitudes and perspectives of classroom guitar students toward the reading of staff notation in music. The purpose of this qualitative research was to reveal these perceptions in the student's own words, and compare them to those of orchestra and band students of comparable experience. Forty-seven students from four suburban middle and high schools on the east coast were selected through purposeful sampling techniques. Research instruments included a Musical Background Questionnaire and a thirty-five question Student Survey. Follow-up interviews were conducted with students to clarify or expound upon collected data. Guitar, orchestra, and band teachers were interviewed in order to provide their perspectives on the issues discussed. The Student Survey featured a five-point Likert-type scale, which measured how much students agreed or disagreed with various statements pertaining to their feelings about music, note-reading, or their class at school. Collected data were coded and used to calculate mean scores, standard deviations, and percentages of students in agreement or disagreement with each statement. Interviews were audio recorded and transcribed into a word processing document for analysis. The study found that while a variety of perspectives exist within a typical guitar class, some students do not find note-reading to be necessary for the types of music they desire to learn. Other findings included a perceived lack of relevance toward the classical elements of the guitar programs in the schools, a lack of educational consistency between classroom curricula and private lesson objectives, and the general description of the struggle some guitarists experience with staff notation. Implications of the collected data were discussed, along with recommendations for better engaging these students.
ContributorsWard, Stephen Michael (Author) / Koonce, Frank (Thesis advisor) / Schmidt, Margaret (Thesis advisor) / Buck, Nancy (Committee member) / Rogers, Rodney (Committee member) / McLin, Katherine (Committee member) / Arizona State University (Publisher)
Created2011
149956-Thumbnail Image.png
Description
CMOS technology is expected to enter the 10nm regime for future integrated circuits (IC). Such aggressive scaling leads to vastly increased variability, posing a grand challenge to robust IC design. Variations in CMOS are often divided into two types: intrinsic variations and process-induced variations. Intrinsic variations are limited by fundamental

CMOS technology is expected to enter the 10nm regime for future integrated circuits (IC). Such aggressive scaling leads to vastly increased variability, posing a grand challenge to robust IC design. Variations in CMOS are often divided into two types: intrinsic variations and process-induced variations. Intrinsic variations are limited by fundamental physics. They are inherent to CMOS structure, considered as one of the ultimate barriers to the continual scaling of CMOS devices. In this work the three primary intrinsic variations sources are studied, including random dopant fluctuation (RDF), line-edge roughness (LER) and oxide thickness fluctuation (OTF). The research is focused on the modeling and simulation of those variations and their scaling trends. Besides the three variations, a time dependent variation source, Random Telegraph Noise (RTN) is also studied. Different from the other three variations, RTN does not contribute much to the total variation amount, but aggregate the worst case of Vth variations in CMOS. In this work a TCAD based simulation study on RTN is presented, and a new SPICE based simulation method for RTN is proposed for time domain circuit analysis. Process-induced variations arise from the imperfection in silicon fabrication, and vary from foundries to foundries. In this work the layout dependent Vth shift due to Rapid-Thermal Annealing (RTA) are investigated. In this work, we develop joint thermal/TCAD simulation and compact modeling tools to analyze performance variability under various layout pattern densities and RTA conditions. Moreover, we propose a suite of compact models that bridge the underlying RTA process with device parameter change for efficient design optimization.
ContributorsYe, Yun, Ph.D (Author) / Cao, Yu (Thesis advisor) / Yu, Hongbin (Committee member) / Song, Hongjiang (Committee member) / Clark, Lawrence (Committee member) / Arizona State University (Publisher)
Created2011
149826-Thumbnail Image.png
Description
ABSTRACT &eacutetudes; written for violin ensemble, which include violin duets, trios, and quartets, are less numerous than solo &eacutetudes.; These works rarely go by the title "&eacutetude;," and have not been the focus of much scholarly research. Ensemble &eacutetudes; have much to offer students, teachers and

ABSTRACT &eacutetudes; written for violin ensemble, which include violin duets, trios, and quartets, are less numerous than solo &eacutetudes.; These works rarely go by the title "&eacutetude;," and have not been the focus of much scholarly research. Ensemble &eacutetudes; have much to offer students, teachers and composers, however, because they add an extra dimension to the learning, teaching, and composing processes. This document establishes the value of ensemble &eacutetudes; in pedagogy and explores applications of the repertoire currently available. Rather than focus on violin duets, the most common form of ensemble &eacutetude;, it mainly considers works for three and four violins without accompaniment. Concentrating on the pedagogical possibilities of studying &eacutetudes; in a group, this document introduces creative ways that works for violin ensemble can be used as both &eacutetudes; and performance pieces. The first two chapters explore the history and philosophy of the violin &eacutetude; and multiple-violin works, the practice of arranging of solo &eacutetudes; for multiple instruments, and the benefits of group learning and cooperative learning that distinguish ensemble &eacutetude; study from solo &eacutetude; study. The third chapter is an annotated survey of works for three and four violins without accompaniment, and serves as a pedagogical guide to some of the available repertoire. Representing a wide variety of styles, techniques and levels, it illuminates an historical association between violin ensemble works and pedagogy. The fourth chapter presents an original composition by the author, titled Variations on a Scottish Folk Song: &eacutetude; for Four Violins, with an explanation of the process and techniques used to create this ensemble &eacutetude.; This work is an example of the musical and technical integration essential to &eacutetude; study, and demonstrates various compositional traits that promote cooperative learning. Ensemble &eacutetudes; are valuable pedagogical tools that deserve wider exposure. It is my hope that the information and ideas about ensemble &eacutetudes; in this paper and the individual descriptions of the works presented will increase interest in and application of violin trios and quartets at the university level.
ContributorsLundell, Eva Rachel (Contributor) / Swartz, Jonathan (Thesis advisor) / Rockmaker, Jody (Committee member) / Buck, Nancy (Committee member) / Koonce, Frank (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2011
149842-Thumbnail Image.png
Description
The name of Geechie Wiley has surfaced only rarely since 1931, when she recorded her second session with the Paramount Company in Grafton, WI. A few scholars including Paul Oliver and Greil Marcus unearthed and promoted her music and called for further research on this enigmatic figure. In other publications,

The name of Geechie Wiley has surfaced only rarely since 1931, when she recorded her second session with the Paramount Company in Grafton, WI. A few scholars including Paul Oliver and Greil Marcus unearthed and promoted her music and called for further research on this enigmatic figure. In other publications, Wiley is frequently given only passing mention in long lists of talented female blues singer-guitarists, or briefly discussed in descriptions of songsters. Her music is lauded in the liner notes of the myriad compilation albums that have re-released her recordings. However, prior to this study, Marcus's three-page profile is the longest work written about Wiley; other contributions range between one sentence and two paragraphs in length. None really answers the question: who was Geechie Wiley? This thesis begins by documenting my attempt to piece together all information presently available on Geechie Wiley. A biographical chapter, supplemented with a discussion of the blues songster, follows. I then discuss my methodology and philosophy for transcription. This is followed by a critical and comparative analysis of the recordings, using the transcriptions as supplements. Finally, my fifth chapter presents conclusions about Wiley's life, career, and disappearance. My transcriptions of Wiley's six songs are found in the first appendix. Reproductions of Paramount Records advertisements are located in the final appendix. In these ways, this thesis argues that Wiley's work traces the transformation of African-American music from the general secular music of the songsters to the iconic blues genre.
ContributorsCordeiro, AnneMarie Youell (Author) / Norton, Kay (Thesis advisor) / Mook, Richard (Committee member) / Sunkett, Mark (Committee member) / Arizona State University (Publisher)
Created2011
149808-Thumbnail Image.png
Description
Finger motion and hand posture of six professional clarinetists (defined by entrance into or completion of a doctorate of musical arts degree in clarinet performance) were recorded using a pair of CyberGloves® in Arizona State University's Center for Cognitive Ubiquitous Computing Laboratory. Performance tasks included performing a slurred three-octave chromatic

Finger motion and hand posture of six professional clarinetists (defined by entrance into or completion of a doctorate of musical arts degree in clarinet performance) were recorded using a pair of CyberGloves® in Arizona State University's Center for Cognitive Ubiquitous Computing Laboratory. Performance tasks included performing a slurred three-octave chromatic scale in sixteenth notes, at sixty quarter-note beats per minute, three times, with a metronome and a short pause between repetitions, and forming three pedagogical hand postures. Following the CyberGloves® tasks, each subject completed a questionnaire about equipment, playing history, practice routines, health practices, and hand usage during computer and sports activities. CyberGlove® data were analyzed to find average hand/finger postures and differences for each pitch across subjects, subject variance in the performance task and differences in ascending and descending postures of the chromatic scale. The data were also analyzed to describe generalized finger posture characteristics based on hand size, whether right hand thumb position affects finger flexion, and whether professional clarinetists use similar finger/hand postures when performing on clarinet, holding a tennis ball, allowing hands to hang freely by the sides, or form a "C" shape. The findings of this study suggest an individual approach based on hand size is necessary for teaching clarinet hand posture.
ContributorsHarger, Stefanie (Author) / Spring, Robert (Thesis advisor) / Hill, Gary (Committee member) / Koonce, Frank (Committee member) / Norton, Kay (Committee member) / Stauffer, Sandy (Committee member) / Arizona State University (Publisher)
Created2011
150213-Thumbnail Image.png
Description
Semiconductor nanowires (NWs) are one dimensional materials and have size quantization effect when the diameter is sufficiently small. They can serve as optical wave guides along the length direction and contain optically active gain at the same time. Due to these unique properties, NWs are now very promising and extensively

Semiconductor nanowires (NWs) are one dimensional materials and have size quantization effect when the diameter is sufficiently small. They can serve as optical wave guides along the length direction and contain optically active gain at the same time. Due to these unique properties, NWs are now very promising and extensively studied for nanoscale optoelectronic applications. A systematic and comprehensive optical and microstructural study of several important infrared semiconductor NWs is presented in this thesis, which includes InAs, PbS, InGaAs, erbium chloride silicate and erbium silicate. Micro-photoluminescence (PL) and transmission electron microscope (TEM) were utilized in conjunction to characterize the optical and microstructure of these wires. The focus of this thesis is on optical study of semiconductor NWs in the mid-infrared wavelengths. First, differently structured InAs NWs grown using various methods were characterized and compared. Three main PL peaks which are below, near and above InAs bandgap, respectively, were observed. The octadecylthiol self-assembled monolayer was employed to passivate the surface of InAs NWs to eliminate or reduce the effects of the surface states. The band-edge emission from wurtzite-structured NWs was completely recovered after passivatoin. The passivated NWs showed very good stability in air and under heat. In the second part, mid-infrared optical study was conducted on PbS wires of subwavelength diameter and lasing was demonstrated under optical pumping. The PbS wires were grown on Si substrate using chemical vapor deposition and have a rock-salt cubic structure. Single-mode lasing at the wavelength of ~3000-4000 nm was obtained from single as-grown PbS wire up to the temperature of 115 K. PL characterization was also utilized to demonstrate the highest crystallinity of the vertical arrays of InP and InGaAs/InP composition-graded heterostructure NWs made by a top-down fabrication method. TEM-related measurements were performed to study the crystal structures and elemental compositions of the Er-compound core-shell NWs. The core-shell NWs consist of an orthorhombic-structured erbium chloride silicate shell and a cubic-structured silicon core. These NWs provide unique Si-compatible materials with emission at 1530 nm for optical communications and solid state lasers.
ContributorsSun, Minghua (Author) / Ning, Cun-Zheng (Thesis advisor) / Yu, Hongbin (Committee member) / Carpenter, Ray W. (Committee member) / Johnson, Shane (Committee member) / Arizona State University (Publisher)
Created2011
150273-Thumbnail Image.png
Description
The purpose of this project was to examine the lives and solo piano works of four members of the early generation of female composers in Taiwan. These four women were born between 1950 and 1960, began to appear on the Taiwanese musical scene after 1980, and were still active as

The purpose of this project was to examine the lives and solo piano works of four members of the early generation of female composers in Taiwan. These four women were born between 1950 and 1960, began to appear on the Taiwanese musical scene after 1980, and were still active as composers at the time of this study. They include Fan-Ling Su (b. 1955), Hwei-Lee Chang (b. 1956), Shyh-Ji Pan-Chew (b. 1957), and Kwang-I Ying (b. 1960). Detailed biographical information on the four composers is presented and discussed. In addition, the musical form and features of all solo piano works at all levels by the four composers are analyzed, and the musical characteristics of each composer's work are discussed. The biography of a fifth composer, Wei-Ho Dai (b. 1950), is also discussed but is placed in the Appendices because her piano music could not be located. This research paper is presented in six chapters: (1) Prologue; the life and music of (2) Fan-Ling Su, (3) Hwei-Lee Chang, (4) Shyh-Ji Pan-Chew, and (5) Kwang-I Ying; and (6) Conclusion. The Prologue provides an overview of the development of Western classical music in Taiwan, a review of extant literature on the selected composers and their music, and the development of piano music in Taiwan. The Conclusion is comprised of comparisons of the four composers' music, including their personal interests and preferences as exhibited in their music. For example, all of the composers have used atonality in their music. Two of the composers, Fan-Ling Su and Kwang-I Ying, openly apply Chinese elements in their piano works, while Hwei-Lee Chang tries to avoid direct use of the Chinese pentatonic scale. The piano works of Hwei-Lee Chang and Shyh-Ji Pan-Chew are chromatic and atonal, and show an economical usage of material. Biographical information on Wei-Ho Dai and an overview of Taiwanese history are presented in the Appendices.
ContributorsWang, Jinding (Author) / Pagano, Caio (Thesis advisor) / Campbell, Andrew (Committee member) / Humphreys, Jere T. (Committee member) / Meyer-Thompson, Janice (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2011
150292-Thumbnail Image.png
Description
Bohuslav Martinù (1890-1959) was a prolific composer who wrote nearly 100 works for piano. His highly imaginative and eclectic style blends elements of the Baroque, Impressionism, Twentieth-century idioms and Czech folk music. His music is fresh and appealing to the listener, yet it remains intriguing as to how all the

Bohuslav Martinù (1890-1959) was a prolific composer who wrote nearly 100 works for piano. His highly imaginative and eclectic style blends elements of the Baroque, Impressionism, Twentieth-century idioms and Czech folk music. His music is fresh and appealing to the listener, yet it remains intriguing as to how all the elements are combined in a cohesive manner. Martinù himself provides clues to his compositional process. He believed in pure musical expression and the intensity of the musical idea, without the need for extra-musical or programmatic connotations. He espoused holistic and organic views toward musical perception and composition, at times referring to a work as an "organism." This study examines Martinù's piano style in light of his many diverse influences and personal philosophy. The first portion of this paper discusses Martinù's overall style through several piano miniatures written throughout his career. It takes into consideration the composer's personal background, musical influences and aesthetic convictions. The second portion focuses specifically on Martinù's first large-scale work for piano, the Fantasie et Toccata, H. 281. Written during a time in which Martinù was black-listed by the Nazis and forced to flee Europe, this piece bears witness to the chaotic events of WWII through its complexity and intensity of character. The discussion and analysis of the Fantasie et Toccata intends to serve as a guide to interpretation for the performer or listener and also seeks to promote the piano music of Bohuslav Martinù to a wider audience.
ContributorsCrane-Waleczek, Jennifer (Author) / Hamilton, Robert (Thesis advisor) / Hackbarth, Glenn (Committee member) / Meyer Thompson, Janice (Committee member) / Norton, Kay (Committee member) / Campbell, Andrew (Committee member) / Arizona State University (Publisher)
Created2011
Description
Works for clarinet in the twentieth century exist in abundance; furthermore, the number of extant works from the Classical period is substantial. However, works for solo clarinet in the late-Romantic style are lacking; most of the significant literature for clarinet is contained in orchestral works. Therefore, the purpose of this

Works for clarinet in the twentieth century exist in abundance; furthermore, the number of extant works from the Classical period is substantial. However, works for solo clarinet in the late-Romantic style are lacking; most of the significant literature for clarinet is contained in orchestral works. Therefore, the purpose of this project is to add to the solo clarinet repertoire of the late Romantic-style through the transcription of works written originally for viola. The four works transcribed for this project are by York Bowen. Bowen was a British composer and pianist who taught at the Royal Academy of Music in England. Although his career flourished in the twentieth century, his music reflects the music of the late-Romantic style. The project includes a transcription of Bowen's Sonata No. 1 in C minor, Op. 18 for viola and piano, Sonata No. 2 in F major, Op. 22 for viola and piano, Romance in D-flat for viola and piano, and Phantasy in F, Op. 54 for viola and piano. Additionally, a brief examination of Bowen's life, an overview of each piece, details regarding transcription parts, a list of changes made to the original part, and a recording of each transcription is included in the document.
ContributorsDeBoer, Andrew Caleb (Author) / Spring, Robert S (Thesis advisor) / Hill, Gary (Committee member) / Norton, Kay (Committee member) / McAllister, Timothy (Committee member) / Stauffer, Sandra (Committee member) / Arizona State University (Publisher)
Created2011
150299-Thumbnail Image.png
Description
Semiconductor devices are generally analyzed with relatively simple equations or with detailed computer simulations. Most text-books use these simple equations and show device diagrams that are frequently very simplified and occasionally incorrect. For example, the carrier densities near the pinch-off point in MOSFETs and JFETs and the minority carrier density

Semiconductor devices are generally analyzed with relatively simple equations or with detailed computer simulations. Most text-books use these simple equations and show device diagrams that are frequently very simplified and occasionally incorrect. For example, the carrier densities near the pinch-off point in MOSFETs and JFETs and the minority carrier density in the base near the reverse-biased base-collector junction are frequently assumed to be zero or near zero. Also the channel thickness at the pinch-off point is often shown to approach zero. None of these assumptions can be correct. The research in thesis addresses these points. I simulated the carrier densities, potentials, electric fields etc. of MOSFETs, BJTs and JFETs at and near the pinch-off regions to determine exactly what happens there. I also simulated the behavior of the quasi-Fermi levels. For MOSFETs, the channel thickness expands slightly before the pinch-off point and then spreads out quickly in a triangular shape and the space-charge region under the channel actually shrinks as the potential increases from source to drain. For BJTs, with collector-base junction reverse biased, most minority carriers diffuse through the base from emitter to collector very fast, but the minority carrier concentration at the collector-base space-charge region is not zero. For JFETs, the boundaries of the space-charge region are difficult to determine, the channel does not disappear after pinch off, the shape of channel is always tapered, and the carrier concentration in the channel decreases progressively. After simulating traditional sized devices, I also simulated typical nano-scaled devices and show that they behave similarly to large devices. These simulation results provide a more complete understanding of device physics and device operation in those regions usually not addressed in semiconductor device physics books.
ContributorsYang, Xuan (Author) / Schroder, Dieter K. (Thesis advisor) / Vasileska, Dragica (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2011
152275-Thumbnail Image.png
Description
With increasing demand for System on Chip (SoC) and System in Package (SiP) design in computer and communication technologies, integrated inductor which is an essential passive component has been widely used in numerous integrated circuits (ICs) such as in voltage regulators and RF circuits. In this work, soft ferromagnetic core

With increasing demand for System on Chip (SoC) and System in Package (SiP) design in computer and communication technologies, integrated inductor which is an essential passive component has been widely used in numerous integrated circuits (ICs) such as in voltage regulators and RF circuits. In this work, soft ferromagnetic core material, amorphous Co-Zr-Ta-B, was incorporated into on-chip and in-package inductors in order to scale down inductors and improve inductors performance in both inductance density and quality factor. With two layers of 500 nm Co-Zr-Ta-B films a 3.5X increase in inductance and a 3.9X increase in quality factor over inductors without magnetic films were measured at frequencies as high as 1 GHz. By laminating technology, up to 9.1X increase in inductance and more than 5X increase in quality factor (Q) were obtained from stripline inductors incorporated with 50 nm by 10 laminated films with a peak Q at 300 MHz. It was also demonstrated that this peak Q can be pushed towards high frequency as far as 1GHz by a combination of patterning magnetic films into fine bars and laminations. The role of magnetic vias in magnetic flux and eddy current control was investigated by both simulation and experiment using different patterning techniques and by altering the magnetic via width. Finger-shaped magnetic vias were designed and integrated into on-chip RF inductors improving the frequency of peak quality factor from 400 MHz to 800 MHz without sacrificing inductance enhancement. Eddy current and magnetic flux density in different areas of magnetic vias were analyzed by HFSS 3D EM simulation. With optimized magnetic vias, high frequency response of up to 2 GHz was achieved. Furthermore, the effect of applied magnetic field on on-chip inductors was investigated for high power applications. It was observed that as applied magnetic field along the hard axis (HA) increases, inductance maintains similar value initially at low fields, but decreases at larger fields until the magnetic films become saturated. The high frequency quality factor showed an opposite trend which is correlated to the reduction of ferromagnetic resonant absorption in the magnetic film. In addition, experiments showed that this field-dependent inductance change varied with different patterned magnetic film structures, including bars/slots and fingers structures. Magnetic properties of Co-Zr-Ta-B films on standard organic package substrates including ABF and polyimide were also characterized. Effects of substrate roughness and stress were analyzed and simulated which provide strategies for integrating Co-Zr-Ta-B into package inductors and improving inductors performance. Stripline and spiral inductors with Co-Zr-Ta-B films were fabricated on both ABF and polyimide substrates. Maximum 90% inductance increase in hundreds MHz frequency range were achieved in stripline inductors which are suitable for power delivery applications. Spiral inductors with Co-Zr-Ta-B films showed 18% inductance increase with quality factor of 4 at frequency up to 3 GHz.
ContributorsWu, Hao (Author) / Yu, Hongbin (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Cao, Yu (Committee member) / Chickamenahalli, Shamala (Committee member) / Arizona State University (Publisher)
Created2013
152285-Thumbnail Image.png
Description
Zinc oxide (ZnO), a naturally n-type semiconductor has been identified as a promising candidate to replace indium tin oxide (ITO) as the transparent electrode in solar cells, because of its wide bandgap (3.37 eV), abundant source materials and suitable refractive index (2.0 at 600 nm). Spray deposition is a convenient

Zinc oxide (ZnO), a naturally n-type semiconductor has been identified as a promising candidate to replace indium tin oxide (ITO) as the transparent electrode in solar cells, because of its wide bandgap (3.37 eV), abundant source materials and suitable refractive index (2.0 at 600 nm). Spray deposition is a convenient and low cost technique for large area and uniform deposition of semiconductor thin films. In particular, it provides an easier way to dope the film by simply adding the dopant precursor into the starting solution. In order to reduce the resistivity of undoped ZnO, many works have been done by doping in the ZnO with either group IIIA elements or VIIA elements using spray pyrolysis. However, the resistivity is still too high to meet TCO's resistivity requirement. In the present work, a novel co-spray deposition technique is developed to bypass a fundamental limitation in the conventional spray deposition technique, i.e. the deposition of metal oxides from incompatible precursors in the starting solution. With this technique, ZnO films codoped with one cationic dopant, Al, Cr, or Fe, and an anionic dopant, F, have been successfully synthesized, in which F is incompatible with all these three cationic dopants. Two starting solutions were prepared and co-sprayed through two separate spray heads. One solution contained only the F precursor, NH 4F. The second solution contained the Zn and one cationic dopant precursors, Zn(O 2CCH 3) 2 and AlCl 3, CrCl 3, or FeCl 3. The deposition was carried out at 500 &degC; on soda-lime glass in air. Compared to singly-doped ZnO thin films, codoped ZnO samples showed better electrical properties. Besides, a minimum sheet resistance, 55.4 Ω/sq, was obtained for Al and F codoped ZnO films after vacuum annealing at 400 &degC;, which was lower than singly-doped ZnO with either Al or F. The transmittance for the Al and F codoped ZnO samples was above 90% in the visible range. This co-spray deposition technique provides a simple and cost-effective way to synthesize metal oxides from incompatible precursors with improved properties.
ContributorsZhou, Bin (Author) / Tao, Meng (Thesis advisor) / Goryll, Michael (Committee member) / Vasileska, Dragica (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2013
151459-Thumbnail Image.png
Description
Throughout history composers and artists have been inspired by the natural world. Nature's influence on music is extraordinary, though water in particular, has had a unique magnetic pull. The large number of compositions dealing with water, from Handel's Water Music (1717) to Ros Bandt's and Leah Barclay's Rivers Talk (2012),

Throughout history composers and artists have been inspired by the natural world. Nature's influence on music is extraordinary, though water in particular, has had a unique magnetic pull. The large number of compositions dealing with water, from Handel's Water Music (1717) to Ros Bandt's and Leah Barclay's Rivers Talk (2012), reflects this continuous fascination. Since the late 1940s, composers have ventured further and brought actual sounds from the environment, including water recorded on tape, into the musical arena. Moreover, since the 1960s, some composers have nudged their listeners to become more ecologically aware. Much skepticism exists, as with any unconventional idea in history, and as a result compositions belonging to this realm of musique concrète are not as widely recognized and examined as they should be. In this thesis, I consider works of three composers: Annea Lockwood, Eve Beglarian, and Leah Barclay, who not only draw inspiration from nature, but also use their creativity to call attention to pristine environments. All three composers embrace the idea that music can be broadly defined and use technology as a tool to communicate their artistic visions. These artists are from three different countries and represent three generations of composers who set precedents for a new way of composing, listening to, performing, and thinking about music and the environment. This thesis presents case studies of Lockwood's A Sound Map of the Danube River, Beglarian's Mississippi River Project, and Barclay's Sound Mirrors. This thesis draws on unpublished correspondence with the composers, analytical theories of R. Murray Schafer, Barry Truax, and Martijn Voorvelt, among others, musicological publications, eco-critical and environmental studies by Al Gore, Bill McKibben, and Vandana Shiva, as well as research by feminist scholars. As there is little written on music and nature from an eco-critical and eco-feminist standpoint, this thesis will contribute to the recognition of significant figures in contemporary music that might otherwise be overlooked. In this study I maintain that composers and sound artists engage with sounds in ways that reveal aspects of particular places, and their attitudes toward these places to lead listeners toward a greater ecological awareness.
ContributorsRichardson, Jamilyn (Author) / Feisst, Sabine (Thesis advisor) / Solís, Ted (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2012
151694-Thumbnail Image.png
Description
This document is intended to show the various kinds of stylistically appropriate melodic and rhythmic ornamentation that can be used in the improvisation of the Sarabandes by J.S. Bach. Traditional editions of Bach's and other Baroque-era keyboard works have reflected evolving historical trends. The historical performance movement and other attempts

This document is intended to show the various kinds of stylistically appropriate melodic and rhythmic ornamentation that can be used in the improvisation of the Sarabandes by J.S. Bach. Traditional editions of Bach's and other Baroque-era keyboard works have reflected evolving historical trends. The historical performance movement and other attempts to "clean up" pre-1950s romanticized performances have greatly limited the freedom and experimentation that was the original intention of these dances. Prior to this study, few ornamented editions of these works have been published. Although traditional practices do not necessarily encourage classical improvisation in performance I argue that manipulation of the melodic and rhythmic layers over the established harmonic progressions will not only provide diversity within the individual dance movements, but also further engage the ears of the performer and listener which encourages further creative exploration. I will focus this study on the ornamentation of all six Sarabandes from J.S. Bach's French Suites and show how various types of melodic and rhythmic variation can provide aurally pleasing alternatives to the composed score without disrupting the harmonic fluency. The author intends this document to be used as a pedagogical tool and the fully ornamented Sarabandes from J.S. Bach's French Suites are included with this document.
ContributorsOakley, Ashley (Author) / Meir, Baruch (Thesis advisor) / Campbell, Andrew (Committee member) / Norton, Kay (Committee member) / Pagano, Caio (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2013
151646-Thumbnail Image.png
Description
The purpose of this project is twofold: to contribute to the literature of chamber ensembles comprising mixed wind, string, and percussion instruments by producing arrangements of three piano rags by William Bolcom; and to highlight Bolcom's pivotal role in the ragtime revival of the 1960's and 1970's. Through his influence

The purpose of this project is twofold: to contribute to the literature of chamber ensembles comprising mixed wind, string, and percussion instruments by producing arrangements of three piano rags by William Bolcom; and to highlight Bolcom's pivotal role in the ragtime revival of the 1960's and 1970's. Through his influence as a scholar, composer, and performer, Bolcom (b. 1938), one of the most prominent American composers of his generation, helped garner respect for ragtime as art music and as one of America's great popular music genres. Bolcom's 3 Ghost Rags were written in the tradition of classic piano rags, but with a compositional sensibility that is influenced by the fifty years that separate them from the close of the original ragtime era. The basis for the present orchestrations of 3 Ghost Rags is the collection of instrumental arrangements of piano rags published by Stark Publishing Co., entitled Standard High-Class Rags. More familiarly known as the "Red Back Book," this publication was representative of the exchange of repertoire between piano and ensembles and served as a repertory for the various ragtime revivals that occurred later in the twentieth century. In creating these orchestrations of Bolcom's piano rags, the author strove to provide another medium in which Bolcom's music could be performed, while orchestrating the music for an historically appropriate ensemble.
ContributorsMelley, Eric Charles (Author) / Hill, Gary W. (Thesis advisor) / Bailey, Wayne (Committee member) / Norton, Kay (Committee member) / Rogers, Rodney (Committee member) / Russell, Timothy (Committee member) / Arizona State University (Publisher)
Created2013
151606-Thumbnail Image.png
Description
William Levi Dawson (1899-1990), director of the Tuskegee Institute Choir from 1931 to 1956, was one of the most important arrangers of Negro spirituals in the twentieth century. He is also remembered as an outstanding composer, conductor, speaker, and leader of festival choruses. His arrangements are still sung by choirs

William Levi Dawson (1899-1990), director of the Tuskegee Institute Choir from 1931 to 1956, was one of the most important arrangers of Negro spirituals in the twentieth century. He is also remembered as an outstanding composer, conductor, speaker, and leader of festival choruses. His arrangements are still sung by choirs all over the world. Save a small number of dissertations and various articles, however, very little has been written about him. In fact, almost no significant writing has been undertaken utilizing the Dawson papers held at the Manuscript, Archives, and Rare Books Library at Emory University in Atlanta, Georgia. This study utilizes that collection in examining four areas of Dawson's life: his work as a composer, his work as an arranger of Negro spirituals, his work as a choral conductor and music pedagogue, and his life as an African American man living in segregated times. Dawson is shown as a thoughtful, deliberate practitioner of his art who built his career with intention, and who, through his various activities, sought both to affirm the traditional music of his people and to transcend his era's problems with the definitions, associations, and prejudices attached to the term "race." Using a diverse selection of letters, notes, and speeches held in the archive, it is possible to develop a fuller, more nuanced portrait of Dawson. Through a thorough examination of a select few of these documents, his growth can be traced from a young composer living in Chicago, to a college choral director dealing with the realities of racial inequality in the mid-twentieth century, to a seasoned, respected elder in his field, endeavoring to pass on to others knowledge of the music he spent his life arranging and teaching.
ContributorsHuff, Vernon Edward (Author) / Schildkret, David (Thesis advisor) / Norton, Kay (Committee member) / Tobias, Evan (Committee member) / Arizona State University (Publisher)
Created2013
151833-Thumbnail Image.png
Description
The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding

The end of the nineteenth century was an exhilarating and revolutionary era for the flute. This period is the Second Golden Age of the flute, when players and teachers associated with the Paris Conservatory developed what would be considered the birth of the modern flute school. In addition, the founding in 1871 of the Société Nationale de Musique by Camille Saint-Saëns (1835-1921) and Romain Bussine (1830-1899) made possible the promotion of contemporary French composers. The founding of the Société des Instruments à Vent by Paul Taffanel (1844-1908) in 1879 also invigorated a new era of chamber music for wind instruments. Within this groundbreaking environment, Mélanie Hélène Bonis (pen name Mel Bonis) entered the Paris Conservatory in 1876, under the tutelage of César Franck (1822-1890). Many flutists are dismayed by the scarcity of repertoire for the instrument in the Romantic and post-Romantic traditions; they make up for this absence by borrowing the violin sonatas of Gabriel Fauré (1845-1924) and Franck. The flute and piano works of Mel Bonis help to fill this void with music composed originally for flute. Bonis was a prolific composer with over 300 works to her credit, but her works for flute and piano have not been researched or professionally recorded in the United States before the present study. Although virtually unknown today in the American flute community, Bonis's music received much acclaim from her contemporaries and deserves a prominent place in the flutist's repertoire. After a brief biographical introduction, this document examines Mel Bonis's musical style and describes in detail her six works for flute and piano while also offering performance suggestions.
ContributorsDaum, Jenna Elyse (Author) / Buck, Elizabeth (Thesis advisor) / Holbrook, Amy (Committee member) / Micklich, Albie (Committee member) / Schuring, Martin (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2013
151854-Thumbnail Image.png
Description
The Fundación del Estado para el Sistema Nacional de Orquestas Juveniles e Infantiles de Venezuela (FESNOJIV), also known as El Sistema, is an internationally recognized social phenomenon. By promoting social reform and development through music education, El Sistema is enriching the lives of thousands of impoverished youth in Venezuela by

The Fundación del Estado para el Sistema Nacional de Orquestas Juveniles e Infantiles de Venezuela (FESNOJIV), also known as El Sistema, is an internationally recognized social phenomenon. By promoting social reform and development through music education, El Sistema is enriching the lives of thousands of impoverished youth in Venezuela by providing a nurturing environment for children in government-sponsored orchestras, choirs, and bands. In this thesis, I contend that the relationship between music education and social reform cultivates sociocultural ideas and expectations that are transmitted through FESNOJIV's curriculum to the participating youth and concert attendees. These ideas and El Sistema's live and recorded performances engage both the local Venezuelan community and the world-at-large. Ultimately, I will show that FESNOJIV has been instrumental in creating, promoting, and maintaining a national Venezuelan identity that is associated with pride and musical achievement.
ContributorsPalmer, Katherine (Author) / Solís, Ted (Thesis advisor) / Norton, Kay (Committee member) / Haefer, J. Richard (Committee member) / Arizona State University (Publisher)
Created2013
151855-Thumbnail Image.png
Description
Due to the recent inclusion of a semi-regular "News from Latin America" column since 2007 in The Clarinet magazine and an increased emphasis on world music genre performances at the International Clarinet Association's annual ClarinetFest, Latin American clarinet compositions have become increasingly popular. Consequently, Latin American performers and composers are

Due to the recent inclusion of a semi-regular "News from Latin America" column since 2007 in The Clarinet magazine and an increased emphasis on world music genre performances at the International Clarinet Association's annual ClarinetFest, Latin American clarinet compositions have become increasingly popular. Consequently, Latin American performers and composers are receiving more attention and recognition than ever before. The contemporary repertoire for clarinet increasingly includes works highlighted at the ClarinetFest international festivals, and many clarinetists express interest in finding new Latin American compositions. In order to supplement this growing Latin American repertoire and to introduce the life and works of Peruvian composer Armando Guevara Ochoa (1926-2013), this project presents a brief biography of the composer, a discussion of his musical style, and new editions of his popular works transcribed for clarinet. A recording of these works is included in an appendix to this document. Prior to this research, much of the scholarship written about Guevara Ochoa was in Spanish. While most sources and scholars relate that Guevara Ochoa composed over 400 works, the whereabouts of fewer than 200 are currently known. This project will supplement Guevara Ochoa's clarinet literature and raise awareness of his compositions in English-speaking countries.
ContributorsPalmer, Katherine H (Author) / Spring, Robert (Thesis advisor) / Micklich, Albie (Committee member) / Norton, Kay (Committee member) / Solís, Ted (Committee member) / Hill, Gary (Committee member) / Arizona State University (Publisher)
Created2013
152264-Thumbnail Image.png
Description
In order to cope with the decreasing availability of symphony jobs and collegiate faculty positions, many musicians are starting to pursue less traditional career paths. Also, to combat declining audiences, musicians are exploring ways to cultivate new and enthusiastic listeners through relevant and engaging performances. Due to these challenges, many

In order to cope with the decreasing availability of symphony jobs and collegiate faculty positions, many musicians are starting to pursue less traditional career paths. Also, to combat declining audiences, musicians are exploring ways to cultivate new and enthusiastic listeners through relevant and engaging performances. Due to these challenges, many community-based chamber music ensembles have been formed throughout the United States. These groups not only focus on performing classical music, but serve the needs of their communities as well. The problem, however, is that many musicians have not learned the business skills necessary to create these career opportunities. In this document I discuss the steps ensembles must take to develop sustainable careers. I first analyze how groups build a strong foundation through getting to know their communities and creating core values. I then discuss branding and marketing so ensembles can develop a public image and learn how to publicize themselves. This is followed by an investigation of how ensembles make and organize their money. I then examine the ways groups ensure long-lasting relationships with their communities and within the ensemble. I end by presenting three case studies of professional ensembles to show how groups create and maintain successful careers. Ensembles must develop entrepreneurship skills in addition to cultivating their artistry. These business concepts are crucial to the longevity of chamber groups. Through interviews of successful ensemble members and my own personal experiences in the Tetra String Quartet, I provide a guide for musicians to use when creating a community-based ensemble.
ContributorsDalbey, Jenna (Author) / Landschoot, Thomas (Thesis advisor) / McLin, Katherine (Committee member) / Ryan, Russell (Committee member) / Solis, Theodore (Committee member) / Spring, Robert (Committee member) / Arizona State University (Publisher)
Created2013
152151-Thumbnail Image.png
Description
Fluxgate sensors are magnetic field sensors that can measure DC and low frequency AC magnetic fields. They can measure much lower magnetic fields than other magnetic sensors like Hall effect sensors, magnetoresistive sensors etc. They also have high linearity, high sensitivity and low noise. The major application of fluxgate sensors

Fluxgate sensors are magnetic field sensors that can measure DC and low frequency AC magnetic fields. They can measure much lower magnetic fields than other magnetic sensors like Hall effect sensors, magnetoresistive sensors etc. They also have high linearity, high sensitivity and low noise. The major application of fluxgate sensors is in magnetometers for the measurement of earth's magnetic field. Magnetometers are used in navigation systems and electronic compasses. Fluxgate sensors can also be used to measure high DC currents. Integrated micro-fluxgate sensors have been developed in recent years. These sensors have much lower power consumption and area compared to their PCB counterparts. The output voltage of micro-fluxgate sensors is very low which makes the analog front end more complex and results in an increase in power consumption of the system. In this thesis a new analog front-end circuit for micro-fluxgate sensors is developed. This analog front-end circuit uses charge pump based excitation circuit and phase delay based read-out chain. With these two features the power consumption of analog front-end is reduced. The output is digital and it is immune to amplitude noise at the output of the sensor. Digital output is produced without using an ADC. A SPICE model of micro-fluxgate sensor is used to verify the operation of the analog front-end and the simulation results show very good linearity.
ContributorsPappu, Karthik (Author) / Bakkaloglu, Bertan (Thesis advisor) / Christen, Jennifer Blain (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2013
Description
This final research paper provides both a performer's perspective and a recording of double clarinet literature by William O. Smith (b. 1926), Eric Mandat (b. 1957), and Jody Rockmaker (b. 1961). The document includes musical examples, references to the recording, and interviews with the composers. The first chapter contains a

This final research paper provides both a performer's perspective and a recording of double clarinet literature by William O. Smith (b. 1926), Eric Mandat (b. 1957), and Jody Rockmaker (b. 1961). The document includes musical examples, references to the recording, and interviews with the composers. The first chapter contains a brief literature review of sources on world double clarinets, biographies of the above-mentioned composers, and other pertinent information. Chapters 2-4 include the performer's perspective on the following works: Epitaphs for Double Clarinet by William O. Smith, Double Life for Solo Clarinet by Eric Mandat, and two compositions by Jody Rockmaker, Half and Half for demi-clarinet in A, and Double Dip. The final chapter examines how double clarinet music has evolved, the challenges and limitations of the repertoire, and the future of the double clarinet genre.
ContributorsEndel, Kimberly Michelle (Author) / Spring, Robert S (Thesis advisor) / Gardner, Joshua (Committee member) / Norton, Kay (Committee member) / Micklich, Albie (Committee member) / Arizona State University (Publisher)
Created2013
151310-Thumbnail Image.png
Description
Characterization of standard cells is one of the crucial steps in the IC design. Scaling of CMOS technology has lead to timing un-certainties such as that of cross coupling noise due to interconnect parasitic, skew variation due to voltage jitter and proximity effect of multiple inputs switching (MIS). Due to

Characterization of standard cells is one of the crucial steps in the IC design. Scaling of CMOS technology has lead to timing un-certainties such as that of cross coupling noise due to interconnect parasitic, skew variation due to voltage jitter and proximity effect of multiple inputs switching (MIS). Due to increased operating frequency and process variation, the probability of MIS occurrence and setup / hold failure within a clock cycle is high. The delay variation due to temporal proximity of MIS is significant for multiple input gates in the standard cell library. The shortest paths are affected by MIS due to the lack of averaging effect. Thus, sensitive designs such as that of SRAM row and column decoder circuits have high probability for MIS impact. The traditional static timing analysis (STA) assumes single input switching (SIS) scenario which is not adequate enough to capture gate delay accurately, as the delay variation due to temporal proximity of the MIS is ~15%-45%. Whereas, considering all possible scenarios of MIS for characterization is computationally intensive with huge data volume. Various modeling techniques are developed for the characterization of MIS effect. Some techniques require coefficient extraction through multiple spice simulation, and do not discuss speed up approach or apply models with complicated algorithms to account for MIS effect. The STA flow accounts for process variation through uncertainty parameter to improve product yield. Some of the MIS delay variability models account for MIS variation through table look up approach, resulting in huge data volume or do not consider propagation of RAT in the design flow. Thus, there is a need for a methodology to model MIS effect with less computational resource, and integration of such effect into design flow without trading off the accuracy. A finite-point based analytical model for MIS effect is proposed for multiple input logic gates and similar approach is extended for setup/hold characterization of sequential elements. Integration of MIS variation into design flow is explored. The proposed methodology is validated using benchmark circuits at 45nm technology node under process variation. Experimental results show significant reduction in runtime and data volume with ~10% error compared to that of SPICE simulation.
ContributorsSubramaniam, Anupama R (Author) / Cao, Yu (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Roveda, Janet (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
151327-Thumbnail Image.png
Description
The integration of yoga into the music curriculum has the potential of offering many immediate and life-long benefits to musicians. Yoga can help address issues such as performance anxiety and musculoskeletal problems, and enhance focus and awareness during musical practice and performance. Although the philosophy of yoga has many similarities

The integration of yoga into the music curriculum has the potential of offering many immediate and life-long benefits to musicians. Yoga can help address issues such as performance anxiety and musculoskeletal problems, and enhance focus and awareness during musical practice and performance. Although the philosophy of yoga has many similarities to the process of learning a musical instrument, the benefits of yoga for musicians is a topic that has gained attention only recently. This document explores several ways in which the practice and philosophy of yoga can be fused with saxophone pedagogy as one way to prepare students for a healthy and successful musical career. A six-week study at Arizona State University was conducted to observe the effects of regular yoga practice on collegiate saxophone students. Nine participants attended a sixty-minute "yoga for musicians" class twice a week. Measures included pre- and post- study questionnaires as well as personal journals kept throughout the duration of the study. These self-reported results showed that yoga had positive effects on saxophone playing. It significantly increased physical comfort and positive thinking, and improved awareness of habitual patterns and breath control. Student participants responded positively to the idea of integrating such a course into the music curriculum. The integration of yoga and saxophone by qualified professionals could also be a natural part of studio class and individual instruction. Carrie Koffman, professor of saxophone at The Hartt School, University of Hartford, has established one strong model for the combination of these disciplines. Her methods and philosophy, together with the basics of Western-style hatha yoga, clinical reports on performance injuries, and qualitative data from the ASU study are explored. These inquiries form the foundation of a new model for integrating yoga practice regularly into the saxophone studio.
ContributorsAdams, Allison Dromgold (Author) / Norton, Kay (Thesis advisor) / Hill, Gary (Committee member) / McAllister, Timothy (Committee member) / Micklich, Albie (Committee member) / Standley, Eileen (Committee member) / Arizona State University (Publisher)
Created2012
151337-Thumbnail Image.png
Description
One dimensional (1D) and quasi-one dimensional quantum wires have been a subject of both theoretical and experimental interest since 1990s and before. Phenomena such as the "0.7 structure" in the conductance leave many open questions. In this dissertation, I study the properties and the internal electron states of semiconductor quantum

One dimensional (1D) and quasi-one dimensional quantum wires have been a subject of both theoretical and experimental interest since 1990s and before. Phenomena such as the "0.7 structure" in the conductance leave many open questions. In this dissertation, I study the properties and the internal electron states of semiconductor quantum wires with the path integral Monte Carlo (PIMC) method. PIMC is a tool for simulating many-body quantum systems at finite temperature. Its ability to calculate thermodynamic properties and various correlation functions makes it an ideal tool in bridging experiments with theories. A general study of the features interpreted by the Luttinger liquid theory and observed in experiments is first presented, showing the need for new PIMC calculations in this field. I calculate the DC conductance at finite temperature for both noninteracting and interacting electrons. The quantized conductance is identified in PIMC simulations without making the same approximation in the Luttinger model. The low electron density regime is subject to strong interactions, since the kinetic energy decreases faster than the Coulomb interaction at low density. An electron state called the Wigner crystal has been proposed in this regime for quasi-1D wires. By using PIMC, I observe the zig-zag structure of the Wigner crystal. The quantum fluctuations suppress the long range correla- tions, making the order short-ranged. Spin correlations are calculated and used to evaluate the spin coupling strength in a zig-zag state. I also find that as the density increases, electrons undergo a structural phase transition to a dimer state, in which two electrons of opposite spins are coupled across the two rows of the zig-zag. A phase diagram is sketched for a range of densities and transverse confinements. The quantum point contact (QPC) is a typical realization of quantum wires. I study the QPC by explicitly simulating a system of electrons in and around a Timp potential (Timp, 1992). Localization of a single electron in the middle of the channel is observed at 5 K, as the split gate voltage increases. The DC conductance is calculated, which shows the effect of the Coulomb interaction. At 1 K and low electron density, a state similar to the Wigner crystal is found inside the channel.
ContributorsLiu, Jianheng, 1982- (Author) / Shumway, John B (Thesis advisor) / Schmidt, Kevin E (Committee member) / Chen, Tingyong (Committee member) / Yu, Hongbin (Committee member) / Ros, Robert (Committee member) / Arizona State University (Publisher)
Created2012
151445-Thumbnail Image.png
Description
The life and pedagogy of Saburo Sumi (1902-1984) has had a major influence on the violin world, particularly in Japan. Born of humble origins and lacking any formal musical training until his adulthood, Sumi nevertheless rose to become one of the most important violin pedagogues of Japan. His non-traditional musical

The life and pedagogy of Saburo Sumi (1902-1984) has had a major influence on the violin world, particularly in Japan. Born of humble origins and lacking any formal musical training until his adulthood, Sumi nevertheless rose to become one of the most important violin pedagogues of Japan. His non-traditional musical background had a profound effect on the teacher he became and contributed to his tremendous success as a pedagogue. Since most of the existing information on Sumi is written in Japanese, this study is designed to acquaint the Western reader with this amazing pedagogue. The information for this study was gathered through books, articles, and documents related to his life as well as the writer's personal experiences with the Sumi family.
ContributorsHayashi, Junko (Author) / McLin, Katherine (Thesis advisor) / Hill, Gary (Committee member) / Holbrook, Amy (Committee member) / Arizona State University (Publisher)
Created2012
151961-Thumbnail Image.png
Description
About piano students who display disruptive behavior and perform far below reasonable expectations, teachers first conclude that they are lazy, rude, disinterested, and/or lacking intelligence or ability. Most dismiss such students from studios and advise parents to discontinue lessons. In truth, many of these students are both highly gifted and

About piano students who display disruptive behavior and perform far below reasonable expectations, teachers first conclude that they are lazy, rude, disinterested, and/or lacking intelligence or ability. Most dismiss such students from studios and advise parents to discontinue lessons. In truth, many of these students are both highly gifted and also have a learning disability. Examined literature shows that the incidence of dyslexia and other learning disabilities in the gifted learner population is several times that of the regular learner population. Although large volumes of research have been devoted to dyslexia, and more recently to dyslexia and music (in the classroom and some in individual instrumental instruction), there is no evidence of the same investigation in relation to the specific needs of highly gifted dyslexic students in learning to play the piano. This project examines characteristics of giftedness and dyslexia, gifted learners with learning disabilities, and the difficulties they encounter in learning to read music and play keyboard instruments. It includes historical summaries of author's experience with such students and description of their progress and success. They reveal some of practical strategies that evolved through several decades of teaching regular and gifted dyslexic students that helped them overcome the challenges and learn to play the piano. Informal conversations and experience exchanges with colleagues, as well as a recently completed pilot study also showed that most piano pedagogues had no formal opportunity to learn about this issue and to be empowered to teach these very special students. The author's hope is to offer personal insights, survey of current knowledge, and practical suggestions that will not only assist piano instructors to successfully teach highly gifted learners with dyslexia, but also inspire them to learn more about the topic.
ContributorsVladikovic, Jelena (Author) / Humphreys, Jere T. (Thesis advisor) / Meir, Baruch (Thesis advisor) / Norton, Kay (Committee member) / Hamilton, Robert (Committee member) / Arizona State University (Publisher)
Created2013
151937-Thumbnail Image.png
Description
Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1 x 1020 cm-3,

Integrated photonics requires high gain optical materials in the telecom wavelength range for optical amplifiers and coherent light sources. Erbium (Er) containing materials are ideal candidates due to the 1.5 μm emission from Er3+ ions. However, the Er density in typical Er-doped materials is less than 1 x 1020 cm-3, thus limiting the maximum optical gain to a few dB/cm, too small to be useful for integrated photonics applications. Er compounds could potentially solve this problem since they contain much higher Er density. So far the existing Er compounds suffer from short lifetime and strong upconversion effects, mainly due to poor quality of crystals produced by various methods of thin film growth and deposition. This dissertation explores a new Er compound: erbium chloride silicate (ECS, Er3(SiO4)2Cl ) in the nanowire form, which facilitates the growth of high quality single crystals. Growth methods for such single crystal ECS nanowires have been established. Various structural and optical characterizations have been carried out. The high crystal quality of ECS material leads to a long lifetime of the first excited state of Er3+ ions up to 1 ms at Er density higher than 1022 cm-3. This Er lifetime-density product was found to be the largest among all Er containing materials. A unique integrating sphere method was developed to measure the absorption cross section of ECS nanowires from 440 to 1580 nm. Pump-probe experiments demonstrated a 644 dB/cm signal enhancement from a single ECS wire. It was estimated that such large signal enhancement can overcome the absorption to result in a net material gain, but not sufficient to compensate waveguide propagation loss. In order to suppress the upconversion process in ECS, Ytterbium (Yb) and Yttrium (Y) ions are introduced as substituent ions of Er in the ECS crystal structure to reduce Er density. While the addition of Yb ions only partially succeeded, erbium yttrium chloride silicate (EYCS) with controllable Er density was synthesized successfully. EYCS with 30 at. % Er was found to be the best. It shows the strongest PL emission at 1.5 μm, and thus can be potentially used as a high gain material.
ContributorsYin, Leijun (Author) / Ning, Cun-Zheng (Thesis advisor) / Chamberlin, Ralph (Committee member) / Yu, Hongbin (Committee member) / Menéndez, Jose (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2013
151454-Thumbnail Image.png
Description
Nitride semiconductors have wide applications in electronics and optoelectronics technologies. Understanding the nature of the optical recombination process and its effects on luminescence efficiency is important for the development of novel devices. This dissertation deals with the optical properties of nitride semiconductors, including GaN epitaxial layers and more complex heterostructures.

Nitride semiconductors have wide applications in electronics and optoelectronics technologies. Understanding the nature of the optical recombination process and its effects on luminescence efficiency is important for the development of novel devices. This dissertation deals with the optical properties of nitride semiconductors, including GaN epitaxial layers and more complex heterostructures. The emission characteristics are examined by cathodoluminescence spectroscopy and imaging, and are correlated with the structural and electrical properties studied by transmission electron microscopy and electron holography. Four major areas are covered in this dissertation, which are described next. The effect of strain on the emission characteristics in wurtzite GaN has been studied. The values of the residual strain in GaN epilayers with different dislocation densities are determined by x-ray diffraction, and the relationship between exciton emission energy and the in-plane residual strain is demonstrated. It shows that the emission energy increases withthe magnitude of the in-plane compressive strain. The temperature dependence of the emission characteristics in cubic GaN has been studied. It is observed that the exciton emission and donor-acceptor pair recombination behave differently with temperature. The donor-bound exciton binding energy has been measured to be 13 meV from the temperature dependence of the emission spectrum. It is also found that the ionization energies for both acceptors and donors are smaller in cubic compared with hexagonal structures, which should contribute to higher doping efficiencies. A comprehensive study on the structural and optical properties is presented for InGaN/GaN quantum wells emitting in the blue, green, and yellow regions of the electromagnetic spectrum. Transmission electron microscopy images indicate the presence of indium inhomogeneties which should be responsible for carrier localization. The temperature dependence of emission luminescence shows that the carrier localization effects become more significant with increasing emission wavelength. On the other hand, the effect of non-radiative recombination on luminescence efficiency also varies with the emission wavelength. The fast increase of the non-radiative recombination rate with temperature in the green emitting QWs contributes to the lower efficiency compared with the blue emitting QWs. The possible saturation of non-radiative recombination above 100 K may explain the unexpected high emission efficiency for the yellow emitting QWs Finally, the effects of InGaN underlayers on the electronic and optical properties of InGaN/GaN quantum wells emitting in visible spectral regions have been studied. A significant improvement of the emission efficiency is observed, which is associated with a blue shift in the emission energy, a reduced recombination lifetime, an increased spatial homogeneity in the luminescence, and a weaker internal field across the quantum wells. These are explained by a partial strain relaxation introduced by the InGaN underlayer, which is measured by reciprocal space mapping of the x-ray diffraction intensity.
ContributorsLi, Di (Author) / Ponce, Fernando (Thesis advisor) / Culbertson, Robert (Committee member) / Yu, Hongbin (Committee member) / Shumway, John (Committee member) / Menéndez, Jose (Committee member) / Arizona State University (Publisher)
Created2012
151377-Thumbnail Image.png
Description
Arnold Schoenberg's 1908-09 song cycle, Das Buch der hängenden Gärten [The Book of the Hanging Gardens], opus 15, represents one of his most decisive early steps into the realm of musical modernism. In the midst of personal and artistic crises, Schoenberg set texts by Stefan George in a style he

Arnold Schoenberg's 1908-09 song cycle, Das Buch der hängenden Gärten [The Book of the Hanging Gardens], opus 15, represents one of his most decisive early steps into the realm of musical modernism. In the midst of personal and artistic crises, Schoenberg set texts by Stefan George in a style he called "pantonality," and described his composition as radically new. Though stylistically progressive, however, Schoenberg's musical achievement had certain ideologically conservative roots: the composer numbered among turn-of-the-century Viennese artists and thinkers whose opposition to the conventional and the popular--in favor of artistic autonomy and creativity--concealed a reactionary misogyny. A critical reading of Hanging Gardens through the lens of gender reveals that Schoenberg, like many of his contemporaries, incorporated strong frauenfeindlich [anti-women] elements into his work, through his modernist account of artistic creativity, his choice of texts, and his musical settings. Although elements of Hanging Gardens' atonal music suggest that Schoenberg valued gendered-feminine principles in his compositional style, a closer analysis of the work's musical language shows an intact masculinist hegemony. Through his deployment of uncanny tonal reminiscences, underlying tonal gestures, and closed forms in Hanging Gardens, Schoenberg ensures that the feminine-associated "excesses" of atonality remain under masculine control. This study draws upon the critical musicology of Susan McClary while arguing that Schoenberg's music is socially contingent, affected by the gender biases of his social and literary milieux. It addresses likely influences on Schoenberg's worldview including the philosophy of Otto Weininger, Freudian psychoanalysis, and a complex web of personal relationships. Finally, this analysis highlights the relevance of Schoenberg's world and its constructions of gender to modern performance practice, and argues that performers must consider interrelated historical, textual, and musical factors when interpreting Hanging Gardens in new contexts.
ContributorsGinger, Kerry Anne (Author) / FitzPatrick, Carole (Thesis advisor) / Dreyfoos, Dale (Committee member) / Mook, Richard (Committee member) / Norton, Kay (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2012
151384-Thumbnail Image.png
Description
ABSTRACT This document introduces singers and voice teachers to Dr. Alfred A. Tomatis's listening training method with a particular emphasis on its relevance to singers. After presenting an overview of Tomatis's work in the field of audio-psycho-phonology (circa 1947 through the 1990s) and specific ways that aspects of his theory

ABSTRACT This document introduces singers and voice teachers to Dr. Alfred A. Tomatis's listening training method with a particular emphasis on its relevance to singers. After presenting an overview of Tomatis's work in the field of audio-psycho-phonology (circa 1947 through the 1990s) and specific ways that aspects of his theory are relevant to singers' performance skills, this project investigates the impact of listening training on singers by examining published research. The studies described in this document have investigated the impact of listening training on elements of the singer's skill set, including but not limited to measures of vocal quality such as intonation, vocal control, intensity, and sonority, as well as language pronunciation and general musicianship. Anecdotal evidence, presented by performers and their observers, is also considered. The evidence generated by research studies and anecdotal reports strongly favors Tomatis-based listening training as a valid way to improve singers' performance abilities.
ContributorsHurley, Susan Lynn (Author) / Doan, Jerry (Thesis advisor) / Dreyfoos, Dale (Committee member) / Kopta, Anne (Committee member) / Norton, Kay (Committee member) / Thompson, Billie M (Committee member) / Arizona State University (Publisher)
Created2012
151675-Thumbnail Image.png
Description
This dissertation is on the study of structural and optical properties of some III-V and II-VI compound semiconductors. The first part of this dissertation is a study of the deformation mechanisms associated with nanoindentation and nanoscratching of InP, GaN, and ZnO crystals. The second part is an investigation of some

This dissertation is on the study of structural and optical properties of some III-V and II-VI compound semiconductors. The first part of this dissertation is a study of the deformation mechanisms associated with nanoindentation and nanoscratching of InP, GaN, and ZnO crystals. The second part is an investigation of some fundamental issues regarding compositional fluctuations and microstructure in GaInNAs and InAlN alloys. In the first part, the microstructure of (001) InP scratched in an atomic force microscope with a small diamond tip has been studied as a function of applied normal force and crystalline direction in order to understand at the nanometer scale the deformation mechanisms in the zinc-blende structure. TEM images show deeper dislocation propagation for scratches along <110> compared to <100>. High strain fields were observed in <100> scratches, indicating hardening due to locking of dislocations gliding on different slip planes. Reverse plastic flow have been observed in <110> scratches in the form of pop-up events that result from recovery of stored elastic strain. In a separate study, nanoindentation-induced plastic deformation has been studied in c-, a-, and m-plane ZnO single crystals and c-plane GaN respectively, to study the deformation mechanism in wurtzite hexagonal structures. TEM results reveal that the prime deformation mechanism is slip on basal planes and in some cases, on pyramidal planes, and strain built up along particular directions. No evidence of phase transformation or cracking was observed in both materials. CL imaging reveals quenching of near band-edge emission by dislocations. In the second part, compositional inhomogeneity in quaternary GaInNAs and ternary InAlN alloys has been studied using TEM. It is shown that exposure to antimony during growth of GaInNAs results in uniform chemical composition in the epilayer, as antimony suppresses the surface mobility of adatoms that otherwise leads to two-dimensional growth and elemental segregation. In a separate study, compositional instability is observed in lattice-matched InAlN films grown on GaN, for growth beyond a certain thickness. Beyond 200 nm of thickness, two sub-layers with different indium content are observed, the top one with lower indium content.
ContributorsHuang, Jingyi (Author) / Ponce, Fernando A. (Thesis advisor) / Carpenter, Ray W (Committee member) / Smith, David J. (Committee member) / Yu, Hongbin (Committee member) / Treacy, Michael Mj (Committee member) / Arizona State University (Publisher)
Created2013
150649-Thumbnail Image.png
Description
The two solo violin works by Carl Nielsen (1865-1931) have been largely overlooked since their composition in the 1920s. These pieces are representative of Nielsen's mature style, combining elements of classical form (the Theme and Variations) as well as processes more commonly found in the twentieth century (through-composition and non-tonal

The two solo violin works by Carl Nielsen (1865-1931) have been largely overlooked since their composition in the 1920s. These pieces are representative of Nielsen's mature style, combining elements of classical form (the Theme and Variations) as well as processes more commonly found in the twentieth century (through-composition and non-tonal harmonic language). This paper is designed to bring these long-neglected works to light and make them more approachable for violin students, teachers and performers. As Denmark's leading composer, Nielsen was well regarded in his lifetime, although his isolation from mainland Europe created obstacles in his path toward international fame. Rather than following trends in post-romantic music, he remained true to his own musical ideals. This choice often isolated him further during his career, but his unique blend of chromatic harmony, driving rhythms and juxtapositions of character captivates modern listeners. Although small in scope compared to his symphonies and other large works, the enthusiastic spirit and indomitable energy of the solo violin works reflect Nielsen's character at its best. Combining a high level of virtuosity with solid structural integrity, textural variety and musical interest, these works deserve a much more prominent place in the standard violin repertoire.
ContributorsVallier, Michelle Mitchell (Author) / McLin, Katherine (Thesis advisor) / Rogers, Rodney (Committee member) / Jiang, Danwen (Committee member) / Bailey, Wayne (Committee member) / Landschoot, Thomas (Committee member) / Arizona State University (Publisher)
Created2012
Description
Illuminating Silent Voices: An African-American Contribution to the Percussion Literature in the Western Art Music Tradition will discuss how Raymond Ridley's original composition, FyrStar (2009), is comparable to other pre-existing percussion works in the literature. Selected compositions for comparison included Darius Milhaud's Concerto for Marimba, Vibraphone and Orchestra, Op. 278

Illuminating Silent Voices: An African-American Contribution to the Percussion Literature in the Western Art Music Tradition will discuss how Raymond Ridley's original composition, FyrStar (2009), is comparable to other pre-existing percussion works in the literature. Selected compositions for comparison included Darius Milhaud's Concerto for Marimba, Vibraphone and Orchestra, Op. 278 (1949); David Friedman's and Dave Samuels's Carousel (1985); Raymond Helble's Duo Concertante for Vibraphone and Marimba, Op. 54 (2009); Tera de Marez Oyens's Octopus: for Bass Clarinet and one Percussionist (marimba/vibraphone) (1982). In the course of this document, the author will discuss the uniqueness of FyrStar's instrumentation of nine single reed instruments--E-flat clarinet, B-flat clarinet, alto clarinet, bass clarinet, B-flat contrabass clarinet, B-flat soprano saxophone, alto saxophone, tenor saxophone, and B-flat baritone saxophone, juxtaposing this unique instrumentation to the symbolic relationship between the ensemble, marimba, and vibraphone.
ContributorsThompson, Darrell Irwin (Author) / Sunkett, Mark E (Thesis advisor) / Bush, Jeffrey (Committee member) / DeMars, James (Committee member) / Little, Bliss (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2012
150910-Thumbnail Image.png
Description
New music is often created as a product of commissions resulting in a collaborative effort between the performer and the composer. This performer-composer relationship represents an important component of the role of the artist in expanding the repertoire of the instrument. Belgian composer, Norbert Goddaer (b. 1933), has written numerous

New music is often created as a product of commissions resulting in a collaborative effort between the performer and the composer. This performer-composer relationship represents an important component of the role of the artist in expanding the repertoire of the instrument. Belgian composer, Norbert Goddaer (b. 1933), has written numerous works for clarinet that are the result of such collaborations. Mr. Goddaer's works for clarinet are well-crafted and audience-friendly, and are thus good programming choices for students and professionals alike. His clarinet works have been performed worldwide in artist recitals, conferences for organizations such as the International Clarinet Association, The Midwest Clinic, and the Texas Music Educators Association, and have been commercially recorded and released by some of the foremost contemporary clarinet artists. These works have a great education value given the fact that they are appropriate choices for such a wide range of clarinetists. In an effort to contribute to this body of performance history, the author has produced a recording of five of Goddaer's previously unrecorded works, accompanied by a performance guide to each work. This document provides detailed performance notes with corresponding musical examples, basic formal analyses, and musical suggestions for Las Mañas, Conversations, Ballad, Duets, and Restless by Norbert Goddaer. The author has included a full transcript of an interview with Norbert Goddaer, which includes a first-person discussion of each work, and additionally includes biographical information supported by concert programs and an annotated list of all of Goddaer's works for clarinet, and a discography of his works for clarinet.
ContributorsClasen, Kevin (Author) / Spring, Robert S (Thesis advisor) / Gardner, Joshua T (Committee member) / Norton, Kay (Committee member) / Hill, Gary (Committee member) / McAllister, Timothy (Committee member) / Arizona State University (Publisher)
Created2012
150560-Thumbnail Image.png
Description
The number of Brazilian immigrants in the United States has greatly increased over the past three decades. In Phoenix, Arizona, this population increase reveals itself through a greater number of large Brazilian cultural events and higher demand for live Brazilian music. Music is so embedded in Brazilian culture that it

The number of Brazilian immigrants in the United States has greatly increased over the past three decades. In Phoenix, Arizona, this population increase reveals itself through a greater number of large Brazilian cultural events and higher demand for live Brazilian music. Music is so embedded in Brazilian culture that it serves as the ideal medium through which immigrants can reconnect to their Brazilian heritage. In this thesis, I contend that Brazilian immigrants in Phoenix, Arizona maintain their identity as Brazilians through various activities extracted from their home culture, the most prominent being musical interaction and participation. My research reveals three primary factors which form a foundation for maintaining cultural identity through music within the Brazilian immigrant community in Phoenix. These include the common experiences of immigration, diasporic identity, and the role of music within this diaspora. Music is one of the stronger art forms for representing emotions and creating an experience of relationship and connections. Music creates a medium with which to confirm identity, and makes the Brazilian immigrant population visible to other Americans and outsiders. While other Brazilian activities can also serve to maintain immigrants' identity, it is clear to me from five years of participant-observation that musical interaction and participation is the most prominent and effective means for Brazilians in Phoenix to maintain their cultural identity while living in the U.S. As a community, music unites the experiences of the Brazilian immigrants and removes them from the periphery of life in a new society.
ContributorsSwietlik, Amy (Author) / Solís, Ted (Thesis advisor) / Norton, Kay (Committee member) / Pilafian, Sam (Committee member) / Arizona State University (Publisher)
Created2012
150588-Thumbnail Image.png
Description
This thesis summarizes the research work carried out on design, modeling and simulation of semiconductor nanophotonic devices. The research includes design of nanowire (NW) lasers, modeling of active plasmonic waveguides, design of plasmonic nano-lasers, and design of all-semiconductor plasmonic systems. For the NW part, a comparative study of electrical injection

This thesis summarizes the research work carried out on design, modeling and simulation of semiconductor nanophotonic devices. The research includes design of nanowire (NW) lasers, modeling of active plasmonic waveguides, design of plasmonic nano-lasers, and design of all-semiconductor plasmonic systems. For the NW part, a comparative study of electrical injection in the longitudinal p-i-n and coaxial p-n core-shell NWs was performed. It is found that high density carriers can be efficiently injected into and confined in the core-shell structure. The required bias voltage and doping concentrations in the core-shell structure are smaller than those in the longitudinal p-i-n structure. A new device structure with core-shell configuration at the p and n contact regions for electrically driven single NW laser was proposed. Through a comprehensive design trade-off between threshold gain and threshold voltage, room temperature lasing has been proved in the laser with low threshold current and large output efficiency. For the plasmonic part, the propagation of surface plasmon polariton (SPP) in a metal-semiconductor-metal structure where semiconductor is highly excited to have an optical gain was investigated. It is shown that near the resonance the SPP mode experiences an unexpected giant modal gain that is 1000 times of the material gain in the semiconductor and the corresponding confinement factor is as high as 105. The physical origin of the giant modal gain is the slowing down of the average energy propagation in the structure. Secondly, SPP modes lasing in a metal-insulator-semiconductor multi-layer structure was investigated. It is shown that the lasing threshold can be reduced by structural optimization. A specific design example was optimized using AlGaAs/GaAs/AlGaAs single quantum well sandwiched between silver layers. This cavity has a physical volume of 1.5×10-4 λ03 which is the smallest nanolaser reported so far. Finally, the all-semiconductor based plasmonics was studied. It is found that InAs is superior to other common semiconductors for plasmonic application in mid-infrared range. A plasmonic system made of InAs, GaSb and AlSb layers, consisting of a plasmonic source, waveguide and detector was proposed. This on-chip integrated system is realizable in a single epitaxial growth process.
ContributorsLi, Debin (Author) / Ning, Cun-Zheng (Thesis advisor) / Zhang, Yong-Hang (Committee member) / Balanis, Constantine A (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
150445-Thumbnail Image.png
Description
Emily Dickinson is a well-known American poet of the nineteenth century, and her oeuvre consists of nearly 2,000 posthumously published poems. Written largely in hymn form with unique ideas of punctuation and grammar, her poetry attracts composers with its inherent musicality. The twentieth-century American composers Aaron Copland, Ernst Bacon, Lee

Emily Dickinson is a well-known American poet of the nineteenth century, and her oeuvre consists of nearly 2,000 posthumously published poems. Written largely in hymn form with unique ideas of punctuation and grammar, her poetry attracts composers with its inherent musicality. The twentieth-century American composers Aaron Copland, Ernst Bacon, Lee Hoiby, and Gordon Getty have created song settings of Dickinson's poetry. Copland's song cycle Twelve Poems of Emily Dickinson (1949-50) is admired by many as an illustration of poetry; however, the Dickinson cycles by Bacon, Hoiby, and Getty are also valuable, lesser-known representations of her writing. Settings of one poem, "There came a Wind like a Bugle--", are common among Copland's Twelve Poems, Bacon's cycle Songs from Emily Dickinson: Nature, Time, and Space (1930), Hoiby's Four Dickinson Songs (1988), and Getty's The White Election (1982). These latter three settings have previously undergone some theoretical analysis; however, this paper considers a performance analysis of these songs from a singer's point of view. Chapter 1 provides background for this study. Chapter 2 consists of a biographical overview of Dickinson's life and writing style, as well as a brief literary analysis of "There came a Wind like a Bugle--". Chapters 3, 4, and 5 discuss Ernst Bacon, Lee Hoiby, and Gordon Getty, respectively; each chapter consists of a short biography of the composer and a discussion of his writing style, a brief theoretical analysis of his song setting, and commentary on the merits of his setting from the point of view of a singer. Observations of the depiction of mood in the song and challenges for the singer are also noted. This paper provides a comparative analysis of three solo vocal settings of one Emily Dickinson poem as a guide for singers who wish to begin studying song settings of this poem. The Bacon and Hoiby settings were found to be lyrical, tonal representations of the imagery presented in "There came a Wind like a Bugle--". The Getty setting was found to be a musically starker representation of the poem's atmosphere. These settings are distinctive and worthy of study and performance.
ContributorsCastellone, Amanda Beth (Author) / Doan, Jerry (Thesis advisor) / Kopta, Anne E (Thesis advisor) / Dreyfoos, Dale (Committee member) / Mills, Robert (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2011
150540-Thumbnail Image.png
Description
In today's world there is a great need for sensing methods as tools to provide critical information to solve today's problems in security applications. Real time detection of trace chemicals, such as explosives, in a complex environment containing various interferents using a portable device that can be reliably deployed in

In today's world there is a great need for sensing methods as tools to provide critical information to solve today's problems in security applications. Real time detection of trace chemicals, such as explosives, in a complex environment containing various interferents using a portable device that can be reliably deployed in a field has been a difficult challenge. A hybrid nanosensor based on the electrochemical reduction of trinitrotoluene (TNT) and the interaction of the reduction products with conducting polymer nanojunctions in an ionic liquid was fabricated. The sensor simultaneously measures the electrochemical current from the reduction of TNT and the conductance change of the polymer nanojunction caused from the reduction product. The hybrid detection mechanism, together with the unique selective preconcentration capability of the ionic liquid, provides a selective, fast, and sensitive detection of TNT. The sensor, in its current form, is capable of detecting parts per trillion level TNT in the presence of various interferents within a few minutes. A novel hybrid electrochemical-colorimetric (EC-C) sensing platform was also designed and fabricated to meet these challenges. The hybrid sensor is based on electrochemical reactions of trace explosives, colorimetric detection of the reaction products, and unique properties of the explosives in an ionic liquid (IL). This approach affords not only increased sensitivity but also selectivity as evident from the demonstrated null rate of false positives and low detection limits. Using an inexpensive webcam a detection limit of part per billion in volume (ppbV) has been achieved and demonstrated selective detection of explosives in the presence of common interferences (perfumes, mouth wash, cleaners, petroleum products, etc.). The works presented in this dissertation, were published in the Journal of the American Chemical Society (JACS, 2009) and Nano Letters (2010), won first place in the National Defense Research contest in (2009) and has been granted a patent (WO 2010/030874 A1). In addition, other work related to conductive polymer junctions and their sensing capabilities has been published in Applied Physics Letters (2005) and IEEE sensors journal (2008).
ContributorsDiaz Aguilar, Alvaro (Author) / Tao, Nongjian (Thesis advisor) / Tsui, Raymond (Committee member) / Barnaby, Hugh (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
150661-Thumbnail Image.png
Description
Studying charge transport through single molecules tethered between two metal electrodes is of fundamental importance in molecular electronics. Over the years, a variety of methods have been developed in attempts of performing such measurements. However, the limitation of these techniques is still one of the factors that prohibit one from

Studying charge transport through single molecules tethered between two metal electrodes is of fundamental importance in molecular electronics. Over the years, a variety of methods have been developed in attempts of performing such measurements. However, the limitation of these techniques is still one of the factors that prohibit one from gaining a thorough understanding of single molecule junctions. Firstly, the time resolution of experiments is typically limited to milli to microseconds, while molecular dynamics simulations are carried out on the time scale of pico to nanoseconds. A huge gap therefore persists between the theory and the experiments. This thesis demonstrates a nanosecond scale measurement of the gold atomic contact breakdown process. A combined setup of DC and AC circuits is employed, where the AC circuit reveals interesting observations in nanosecond scale not previously seen using conventional DC circuits. The breakdown time of gold atomic contacts is determined to be faster than 0.1 ns and subtle atomic events are observed within nanoseconds. Furthermore, a new method based on the scanning tunneling microscope break junction (STM-BJ) technique is developed to rapidly record thousands of I-V curves from repeatedly formed single molecule junctions. 2-dimensional I-V and conductance-voltage (G-V) histograms constructed using the acquired data allow for more meaningful statistical analysis to single molecule I-V characteristics. The bias voltage adds an additional dimension to the conventional single molecule conductance measurement. This method also allows one to perform transition voltage spectra (TVS) for individual junctions and to study the correlation between the conductance and the tunneling barrier height. The variation of measured conductance values is found to be primarily determined by the poorly defined contact geometry between the molecule and metal electrodes, rather than the tunnel barrier height. In addition, the rapid I-V technique is also found useful in studying thermoelectric effect in single molecule junctions. When applying a temperature gradient between the STM tip and substrate in air, the offset current at zero bias in the I-V characteristics is a measure of thermoelectric current. The rapid I-V technique allows for statistical analysis of such offset current at different temperature gradients and thus the Seebeck coefficient of single molecule junctions is measured. Combining with single molecule TVS, the Seebeck coefficient is also found to be a measure of tunnel barrier height.
ContributorsGuo, Shaoyin (Author) / Tao, Nongjian (Thesis advisor) / Bennett, Peter (Committee member) / Ning, Cun-Zheng (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012
150852-Thumbnail Image.png
Description
Nanowires (NWs) have attracted many interests due to their advance in synthesis and their unique structural, electrical and optical properties. NWs have been realized as promising candidates for future photonic platforms. In this work, erbium chloride silicate (ECS), CdS and CdSSe NWs growth by vapor-liquid-solid mechanism and their characterization were

Nanowires (NWs) have attracted many interests due to their advance in synthesis and their unique structural, electrical and optical properties. NWs have been realized as promising candidates for future photonic platforms. In this work, erbium chloride silicate (ECS), CdS and CdSSe NWs growth by vapor-liquid-solid mechanism and their characterization were demonstrated. In the ECS NWs part, systematic experiments were performed to investigate the relation between growth temperature and NWs structure. Scanning electron microscopy, Raman spectroscopy, X-ray diffraction and photoluminescence characterization were used to study the NWs morphology, crystal quality and optical properties. At low growth temperature, there was strong Si Raman signal observed indicating ECS NWs have Si core. At high growth temperature, the excess Si signal was disappeared and the NWs showed better crystal quality and optical properties. The growth temperature is the key parameter that will induce the transition from Si/ECS core-shell NWs structure to solid ECS NWs. With the merits of high Er concentration and long PL lifetime, ECS NWs can serve as optical gain material with emission at 1.5 μm for communications and amplifiers. In the CdS, CdSSe NWs part, the band gap engineering of CdSSe NWs with spatial composition tuning along single NWs were demonstrated. The first step of realizing CdSSe NWs was the controlled growth of CdS NWs. It showed that overall pressure would largely affect the lengths of the CdS NWs. NWs with longer length can be obtained at higher pressure. Then, based on CdS NWs growth and by adding CdSe step by step, composition graded CdSSe alloy NWs were successfully synthesized. The temperature control over the source vapor concentration plays the key role for the growth.
ContributorsNing, Hao (Author) / Ning, Cunzheng (Thesis advisor) / Yu, Hongbin (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2012
150868-Thumbnail Image.png
Description
Zwischen in the German language means `between,' and over the past century, as operatic voices have evolved in both range and size, the voice classification of Zwischenfach has become much more relevant - particularly to the female voice. Identifying whether nineteenth century composers recognized the growing opportunities for vocal drama,

Zwischen in the German language means `between,' and over the past century, as operatic voices have evolved in both range and size, the voice classification of Zwischenfach has become much more relevant - particularly to the female voice. Identifying whether nineteenth century composers recognized the growing opportunities for vocal drama, size, and range in singers and therefore wrote roles for `between' singers; or conversely whether, singers began to challenge and develop their voices to sing the new influx of romantic, verismo and grand repertoire is difficult to determine. Whichever the case, teachers and students should not be surprised about the existence of this nebulous Fach. A clear and concise definition of the word Fach for the purpose of this paper is as follows: a specific voice classification. Zwischenfach is an important topic because young singers are often confused and over-eager to self-label due to the discipline's excessive labeling of Fachs. Rushing to categorize a young voice ultimately leads to misperceptions. To address some of the confusion, this paper briefly explores surveys of the pedagogy and history of the Fach system. To gain insights into the relevance of Zwischenfach in today's marketplace, I developed with my advisors, colleagues and students a set of subjects willing to fill out questionnaires. This paper incorporates current interviews from two casting directors of national and international opera houses, an emerging American mezzo-soprano, a mid-career working European mezzo-soprano, an operatic stage director, an education director for opera houses and a composer. These interviews, along with modern examples of zwischenfach voices are analyzed and discussed.
ContributorsAllen, Jennifer, D.M.A (Author) / Norton, Kay (Thesis advisor) / FitzPatrick, Carole (Thesis advisor) / Dreyfoos, Dale (Committee member) / Ryan, Russell (Committee member) / Barefield, Robert (Committee member) / Arizona State University (Publisher)
Created2012
150872-Thumbnail Image.png
Description
John Harbison is one of the most prominent composers of the twentieth and twenty-first centuries. He has made major contributions in all areas of classical music, including operas, symphonies, chamber music, choral works, and vocal pieces.Among his vast output is 'Four Songs of Solitude,' his only composition (to date) for

John Harbison is one of the most prominent composers of the twentieth and twenty-first centuries. He has made major contributions in all areas of classical music, including operas, symphonies, chamber music, choral works, and vocal pieces.Among his vast output is 'Four Songs of Solitude,' his only composition (to date) for solo violin. Though the piece is beautiful and reflective in nature, its inherent technical and musical difficulties present challenges to violinists preparing the piece. There is no published edition of 'Four Songs of Solitude' that includes bowings and fingerings, and violinists used to practicing and performing the études and repertoire of the eighteenth and nineteenth centuries may have difficulty determining how to successfully navigate the music. This paper examines the piece in detail, providing an analytic description of the music and suggestions for practice. An interview with the composer yielded many insights into the structural and harmonic events of the songs, and the composer's interpretive suggestions are given alongside technical suggestions by the author. The solo violin has a centuries-long legacy, and some of the most performed repertoire exists in the medium. 'Four Songs of Solitude' is a demanding set of pieces that stands out in late twentieth-century violin music. Providing information about the piece directly from the composer and suggestions for practice and performance increases the accessibility of the work for violinists seeking to bring it to the concert stage.
ContributorsSchreffler, Sarah (Author) / McLin, Katherine (Thesis advisor) / Hill, Gary (Committee member) / Holbrook, Amy (Committee member) / Spring, Robert (Committee member) / Swartz, Jonathan (Committee member) / Arizona State University (Publisher)
Created2012
150766-Thumbnail Image.png
Description
Examples of new or extended clarinet techniques first appeared early in the twentieth century. By the 1960s, composers and performers began to drastically augment standard clarinet technique, by experimenting with multiphonics and microtones. Subsequently, clarinetists-teachers William O. Smith, Gerard Errante, Ronald Caravan, and others further pushed the limits of sound

Examples of new or extended clarinet techniques first appeared early in the twentieth century. By the 1960s, composers and performers began to drastically augment standard clarinet technique, by experimenting with multiphonics and microtones. Subsequently, clarinetists-teachers William O. Smith, Gerard Errante, Ronald Caravan, and others further pushed the limits of sound through their compositions for clarinet. This study explores the important contributions of clarinetist-teacher-composer Eric Mandat to the clarinet repertoire, and presents readers with a detailed biography of Mandat. Additionally, this research paper provides insights into Eric Mandat's instinctive approach to life and considers how this modus operandi translates into success as a composer, as a clarinetist, and as a teacher. Interviews with Eric Mandat comprise the basis for this document; these are supplemented by his writings, articles about Mandat, reviews of his music, and interviews with select colleagues and students. This is the first document to examine Eric Mandat's history and development as a composer, teacher and clarinetist.
Contributorsd'Alessio, Rebecca Tout (Author) / Spring, Robert (Thesis advisor) / Hill, Gary (Committee member) / Hackbarth, Glenn (Committee member) / Schuring, Martin (Committee member) / McLin, Katherine (Committee member) / Arizona State University (Publisher)
Created2012
150456-Thumbnail Image.png
Description
Musical Impressionism has been most significantly reflected through the works of Claude Debussy (1862-1918) and Maurice Ravel (1875-1937). These two key figures exhibit the essence of this art and their piano music remains substantial, influential, and frequently assigned and played today. Nevertheless, from a pedagogical perspective, important factors required in

Musical Impressionism has been most significantly reflected through the works of Claude Debussy (1862-1918) and Maurice Ravel (1875-1937). These two key figures exhibit the essence of this art and their piano music remains substantial, influential, and frequently assigned and played today. Nevertheless, from a pedagogical perspective, important factors required in achieving a successful performance of Debussy and Ravel's piano music--delicate tone production, independent voicing, complicated rhythm, sensitive pedaling, and a knowledgeable view of Impressionism--are musically and technically beyond the limit of early advanced students. This study provides a collection of short piano pieces by nine lesser-known European and American composers--Edward MacDowell (1861-1908), Charles Griffes (1884-1920), Marion Bauer (1887-1955), Cyril Scott (1879-1970), Arnold Bax (1883-1953), Selim Palmgren (1878-1951), Ottorino Respighi (1879-1936), Jacques Ibert (1890-1962) and Federico Mompou (1893-1987). They were influenced by impressionistic aesthetics or composed at one time in an impressionistic manner over a span of their lifetimes and their music provides a bridge to the more advanced impressionistic pieces of Debussy and Ravel for early advanced students. These composers' selected short piano pieces display richly colored sonority through the use of impressionistic techniques such as non-functional harmony (parallel chords and free modulation), exotic setting (e.g. modality, pentatonic and whole-tone scales), ostinato figures, bell-sound imitation, and extended texture. Moreover, personal interpretive elements, such as poetic and folklore references, were incorporated in some piano works of MacDowell, Griffes, Bauer, Scott, and Bax; among them MacDowell and Bax were particularly inspired by Celtic and Nordic materials. Mompou infused Spanish folklores in his individual naïve style. Most importantly, these selected short piano pieces are approachable and attractive to early advanced pianists. These works, as well as other largely undiscovered impressionistic piano character pieces, ought to be a great source of preliminary repertoire as preparation for the music of Debussy and Ravel.
ContributorsChien, Chieh Jenny (Author) / Thompson, Janice Meyer (Thesis advisor) / Hamilton, Robert (Committee member) / Humphreys, Jere (Committee member) / Norton, Kay (Committee member) / Pagano, Caio (Committee member) / Arizona State University (Publisher)
Created2011
151070-Thumbnail Image.png
Description
Built-in-Self-Test (BiST) for transmitters is a desirable choice since it eliminates the reliance on expensive instrumentation to do RF signal analysis. Existing on-chip resources, such as power or envelope detectors, or small additional circuitry can be used for BiST purposes. However, due to limited bandwidth, measurement of complex specifications, such

Built-in-Self-Test (BiST) for transmitters is a desirable choice since it eliminates the reliance on expensive instrumentation to do RF signal analysis. Existing on-chip resources, such as power or envelope detectors, or small additional circuitry can be used for BiST purposes. However, due to limited bandwidth, measurement of complex specifications, such as IQ imbalance, is challenging. In this work, a BiST technique to compute transmitter IQ imbalances using measurements out of a self-mixing envelope detector is proposed. Both the linear and non linear parameters of the RF transmitter path are extracted successfully. We first derive an analytical expression for the output signal. Using this expression, we devise test signals to isolate the effects of gain and phase imbalance, DC offsets, time skews and system nonlinearity from other parameters of the system. Once isolated, these parameters are calculated easily with a few mathematical operations. Simulations and hardware measurements show that the technique can provide accurate characterization of IQ imbalances. One of the glaring advantages of this method is that, the impairments are extracted from analyzing the response at baseband frequency and thereby eliminating the need of high frequency ATE (Automated Test Equipment).
ContributorsByregowda, Srinath (Author) / Ozev, Sule (Thesis advisor) / Cao, Yu (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2012