Matching Items (49)
Filtering by

Clear all filters

149730-Thumbnail Image.png
Description
Nonlinear dispersive equations model nonlinear waves in a wide range of physical and mathematics contexts. They reinforce or dissipate effects of linear dispersion and nonlinear interactions, and thus, may be of a focusing or defocusing nature. The nonlinear Schrödinger equation or NLS is an example of such equations. It appears

Nonlinear dispersive equations model nonlinear waves in a wide range of physical and mathematics contexts. They reinforce or dissipate effects of linear dispersion and nonlinear interactions, and thus, may be of a focusing or defocusing nature. The nonlinear Schrödinger equation or NLS is an example of such equations. It appears as a model in hydrodynamics, nonlinear optics, quantum condensates, heat pulses in solids and various other nonlinear instability phenomena. In mathematics, one of the interests is to look at the wave interaction: waves propagation with different speeds and/or different directions produces either small perturbations comparable with linear behavior, or creates solitary waves, or even leads to singular solutions. This dissertation studies the global behavior of finite energy solutions to the $d$-dimensional focusing NLS equation, $i partial _t u+Delta u+ |u|^{p-1}u=0, $ with initial data $u_0in H^1,; x in Rn$; the nonlinearity power $p$ and the dimension $d$ are chosen so that the scaling index $s=frac{d}{2}-frac{2}{p-1}$ is between 0 and 1, thus, the NLS is mass-supercritical $(s>0)$ and energy-subcritical $(s<1).$ For solutions with $ME[u_0]<1$ ($ME[u_0]$ stands for an invariant and conserved quantity in terms of the mass and energy of $u_0$), a sharp threshold for scattering and blowup is given. Namely, if the renormalized gradient $g_u$ of a solution $u$ to NLS is initially less than 1, i.e., $g_u(0)<1,$ then the solution exists globally in time and scatters in $H^1$ (approaches some linear Schr"odinger evolution as $ttopminfty$); if the renormalized gradient $g_u(0)>1,$ then the solution exhibits a blowup behavior, that is, either a finite time blowup occurs, or there is a divergence of $H^1$ norm in infinite time. This work generalizes the results for the 3d cubic NLS obtained in a series of papers by Holmer-Roudenko and Duyckaerts-Holmer-Roudenko with the key ingredients, the concentration compactness and localized variance, developed in the context of the energy-critical NLS and Nonlinear Wave equations by Kenig and Merle. One of the difficulties is fractional powers of nonlinearities which are overcome by considering Besov-Strichartz estimates and various fractional differentiation rules.
ContributorsGuevara, Cristi Darley (Author) / Roudenko, Svetlana (Thesis advisor) / Castillo_Chavez, Carlos (Committee member) / Jones, Donald (Committee member) / Mahalov, Alex (Committee member) / Suslov, Sergei (Committee member) / Arizona State University (Publisher)
Created2011
152303-Thumbnail Image.png
Description
Purpose: To examine: (1) whether Non-Hispanic Blacks (NHB) and Non-Hispanic Whites (NHW) with diagnosed arthritis differed in self-reported physical activity (PA) levels, (2) if NHB and NHW with arthritis differed on potential correlates of PA based on the Social Ecological Model (Mcleroy et al., 1988), and (3) if PA participation

Purpose: To examine: (1) whether Non-Hispanic Blacks (NHB) and Non-Hispanic Whites (NHW) with diagnosed arthritis differed in self-reported physical activity (PA) levels, (2) if NHB and NHW with arthritis differed on potential correlates of PA based on the Social Ecological Model (Mcleroy et al., 1988), and (3) if PA participation varied by race/ethnicity after controlling for age, gender, education, and BMI. Methods: This study was a secondary data analysis of data collected from 2006-2008 in Chicago, IL as part of the Midwest Roybal Center for Health Promotion. Bivariate analyses were used to assess potential differences between race in meeting either ACR or ACSM PA guidelines. Comparisons by race between potential socio-demographic correlates and meeting physical activity guidelines were assessed using Chi-squares. Potential differences by race in psychosocial, arthritis, and health-related and environmental correlates were assessed using T-tests. Finally, logistic regression analyses were used to examine if race was still associated with PA after controlling for socio-demographic characteristics. Results: A greater proportion of NHW (68.1% and 35.3%) than NHB (46.5% and 20.9%) met both the arthritis-specific and the American College of Sports Medicine (ACSM) recommendations for physical activity, respectively. NHB had significantly lower self-efficacy for exercise and reported greater impairments in physical function compared to NHW. Likewise, NHB reported more crime and less aesthetics within their neighborhood. NHW were 2.56 times more likely to meet arthritis-specific PA guidelines than NHB after controlling for age, gender, education, marital status, and BMI. In contrast, after controlling for sociodemographic characteristics, age and gender were the only significant predictors of meeting ACSM PA guidelines. Discussion: There were significant differences between NHB and NHW individuals with arthritis in meeting PA guidelines. After controlling for age, gender, education, and BMI non-Hispanic White individuals were still significantly more likely to meet PA guidelines. Interventions aimed at promoting higher levels of physical activity among individuals with arthritis need to consider neighborhood aesthetics and crime when designing programs. More arthritis-specific programs are needed in close proximity to neighborhoods in an effort to promote physical activity.
ContributorsChuran, Christopher (Author) / Der Ananian, Cheryl (Thesis advisor) / Adams, Marc (Committee member) / Campbell, Kathryn (Committee member) / Arizona State University (Publisher)
Created2013
151515-Thumbnail Image.png
Description
This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified

This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified technique results in significant improvement in velocity retrieval accuracy. These modifications include changes to innovation covariance portioning, covariance binning, and analysis increment calculation. It is observed that the modified technique is able to make retrievals with better accuracy, preserves local information better, and compares well with tower measurements. In order to study the error of representativeness and vector retrieval error, a lidar simulator was constructed. Using the lidar simulator a thorough sensitivity analysis of the lidar measurement process and vector retrieval is carried out. The error of representativeness as a function of scales of motion and sensitivity of vector retrieval to look angle is quantified. Using the modified OI technique, study of nocturnal flow in Owens' Valley, CA was carried out to identify and understand uncharacteristic events on the night of March 27th 2006. Observations from 1030 UTC to 1230 UTC (0230 hr local time to 0430 hr local time) on March 27 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) and other in-situ instrumentations are used to corroborate and complement these observations. The modified OI technique is used to identify uncharacteristic and extreme flow events at a wind development site. Estimates of turbulence and shear from this technique are compared to tower measurements. A formulation for equivalent wind speed in the presence of variations in wind speed and direction, combined with shear is developed and used to determine wind energy content in presence of turbulence.
ContributorsChoukulkar, Aditya (Author) / Calhoun, Ronald (Thesis advisor) / Mahalov, Alex (Committee member) / Kostelich, Eric (Committee member) / Huang, Huei-Ping (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
Description
It is possible in a properly controlled environment, such as industrial metrology, to make significant headway into the non-industrial constraints on image-based position measurement using the techniques of image registration and achieve repeatable feature measurements on the order of 0.3% of a pixel, or about an order of magnitude improvement

It is possible in a properly controlled environment, such as industrial metrology, to make significant headway into the non-industrial constraints on image-based position measurement using the techniques of image registration and achieve repeatable feature measurements on the order of 0.3% of a pixel, or about an order of magnitude improvement on conventional real-world performance. These measurements are then used as inputs for a model optimal, model agnostic, smoothing for calibration of a laser scribe and online tracking of velocimeter using video input. Using appropriate smooth interpolation to increase effective sample density can reduce uncertainty and improve estimates. Use of the proper negative offset of the template function has the result of creating a convolution with higher local curvature than either template of target function which allows improved center-finding. Using the Akaike Information Criterion with a smoothing spline function it is possible to perform a model-optimal smooth on scalar measurements without knowing the underlying model and to determine the function describing the uncertainty in that optimal smooth. An example of empiric derivation of the parameters for a rudimentary Kalman Filter from this is then provided, and tested. Using the techniques of Exploratory Data Analysis and the "Formulize" genetic algorithm tool to convert the spline models into more accessible analytic forms resulted in stable, properly generalized, KF with performance and simplicity that exceeds "textbook" implementations thereof. Validation of the measurement includes that, in analytic case, it led to arbitrary precision in measurement of feature; in reasonable test case using the methods proposed, a reasonable and consistent maximum error of around 0.3% the length of a pixel was achieved and in practice using pixels that were 700nm in size feature position was located to within ± 2 nm. Robust applicability is demonstrated by the measurement of indicator position for a King model 2-32-G-042 rotameter.
ContributorsMunroe, Michael R (Author) / Phelan, Patrick (Thesis advisor) / Kostelich, Eric (Committee member) / Mahalov, Alex (Committee member) / Arizona State University (Publisher)
Created2012
161566-Thumbnail Image.png
Description
Objective: Increasing fruit/vegetable (FV) consumption and decreasing waste during the school lunch is a public health priority. Understanding how serving style of FV impacts FV consumption and waste may be an effective means to changing nutrition behaviors in schools. This study examined whether students were more likely to select, consume,

Objective: Increasing fruit/vegetable (FV) consumption and decreasing waste during the school lunch is a public health priority. Understanding how serving style of FV impacts FV consumption and waste may be an effective means to changing nutrition behaviors in schools. This study examined whether students were more likely to select, consume, and waste FV when FVs were cut vs. whole. Methods: Baseline data from the ASU School Lunch Study was used to explore associations between cut vs. whole FV serving style and objectively measured FV selection, consumption, and waste and grade level interactions among a random selection of students (n=6804; 47.8% female; 78.8% BIPOC) attending Arizona elementary, middle, and high schools (N=37). Negative binomial regression models evaluated serving style on FV weight (grams) selected, consumed, and wasted, adjusted for sociodemographics and school. Results: Students were more likely to select cut FVs (IRR=1.11; 95% CI: 1.04, 1.18) and waste cut FVs (IRR=1.20; 95% CI: 1.04, 1.39); however, no differences were observed in the overall consumption of cut vs. whole FVs. Grade-level interactions impacted students’ selection of FVs. Middle school students had a significantly higher effect modification for the selection of cut FVs (IRR=1.18; p=0.006) compared to high school and elementary students. Further, high school students had a significantly lower effect modification for the selection of cut FVs (IRR=0.83; p=0.010) compared to middle and elementary students. No other grade-level interactions were observed. Discussion: Serving style of FV may impact how much FV is selected and wasted, but further research is needed to determine causality between these variables.
ContributorsJames, Amber Chandarana (Author) / Bruening, Meredith (Thesis advisor) / Adams, Marc (Thesis advisor) / Koskan, Alexis (Committee member) / Arizona State University (Publisher)
Created2021
161580-Thumbnail Image.png
Description
The splicing of precursor messenger RNAs (pre-mRNAs) plays an essential role in dictating the mature mRNA profiles of eukaryotic cells. Mis-regulation of splicing, due to mutations in pre-mRNAs or in components of the splicing machinery, is associated with many diseases. Therefore, knowledge of pre-mRNA splicing mechanisms is required to understand

The splicing of precursor messenger RNAs (pre-mRNAs) plays an essential role in dictating the mature mRNA profiles of eukaryotic cells. Mis-regulation of splicing, due to mutations in pre-mRNAs or in components of the splicing machinery, is associated with many diseases. Therefore, knowledge of pre-mRNA splicing mechanisms is required to understand gene expression regulation during states of homeostasis and disease, and for the development of therapeutic interventions.Splicing is catalyzed by the spliceosome, a dynamic and protein-rich ribozyme composed of five small nuclear ribonucleoproteins (snRNPs) and ~170 auxiliary factors. Early interactions that occur in prespliceosomal complexes formed by the 5′- and 3′-splice-site bound U1 and U2 snRNPs are responsible for committing introns for removal. However, the mechanisms underlying these early interactions remain to be fully characterized for understanding the influence of alternative splicing factors and the impact of recurrent disease-associated mutations in prespliceosomal proteins. The goal of my dissertation research was to delineate the role of the U1 small nuclear RNA (snRNA) during prespliceosome assembly. By applying a cellular minigene reporter assay and a variety of in vitro techniques including cell-free protein expression, UV-crosslinking, electrophoretic mobility shift assays, surface plasmon resonance, and RNA affinity purification, my work establishes critical roles for the U1 snRNA stem-loops 3 (SL3) and 4 (SL4) in formation of intron definition interactions during prespliceosome assembly. Previously, the SL4 of the U1 snRNA was shown to form a molecular bridge across introns by contacting the U2-specific splicing factor 3A1 (SF3A1). I identified the Ubiquitin-like domain of SF3A1 as a non-canonical RNA binding domain responsible for U1-SL4 binding. I also determined a role for the SL3 region of the U1 snRNA in splicing and characterized the spliceosomal RNA helicase UAP56 as an SL3 interacting protein. By knocking-down the SL3- and SL4-interacting proteins, I confirmed that U1 splicing activity in vivo relies on UAP56 and SF3A1 and that their functions are interdependent. These findings, in addition to the observations made using in vitro splicing assays, support a model whereby UAP56, through its interaction with U1-SL3, enhances the cross-intron interaction between U1-SL4 and SF3A1 to promote prespliceosome formation.
ContributorsMartelly, William (Author) / Sharma, Shalini (Thesis advisor) / Mangone, Marco (Thesis advisor) / Gustin, Kurt (Committee member) / Chen, Julian (Committee member) / Arizona State University (Publisher)
Created2021
168823-Thumbnail Image.png
Description
Glioblastoma (GBM), the most common and aggressive primary brain tumor affecting adults, is characterized by an aberrant yet druggable epigenetic landscape. The Histone Deacetylases (HDACs), a major family of epigenetic regulators, favor transcriptional repression by mediating chromatin compaction and are frequently overexpressed in human cancers, including GBM. Hence, over the

Glioblastoma (GBM), the most common and aggressive primary brain tumor affecting adults, is characterized by an aberrant yet druggable epigenetic landscape. The Histone Deacetylases (HDACs), a major family of epigenetic regulators, favor transcriptional repression by mediating chromatin compaction and are frequently overexpressed in human cancers, including GBM. Hence, over the last decade there has been considerable interest in using HDAC inhibitors (HDACi) for the treatment of malignant primary brain tumors. However, to date most HDACi tested in clinical trials have failed to provide significant therapeutic benefit to patients with GBM. This is because current HDACi have poor or unknown pharmacokinetic profiles, lack selectivity towards the different HDAC isoforms, and have narrow therapeutic windows. Isoform selectivity for HDACi is important given that broad inhibition of all HDACs results in widespread toxicity across different organs. Moreover, the functional roles of individual HDAC isoforms in GBM are still not well understood. Here, I demonstrate that HDAC1 expression increases with brain tumor grade and is correlated with decreased survival in GBM. I find that HDAC1 is the essential HDAC isoform in glioma stem cells and its loss is not compensated for by its paralogue HDAC2 or other members of the HDAC family. Loss of HDAC1 alone has profound effects on the glioma stem cell phenotype in a p53-dependent manner and leads to significant suppression of tumor growth in vivo. While no HDAC isoform-selective inhibitors are currently available, the second-generation HDACi quisinostat harbors high specificity for HDAC1. I show that quisinostat exhibits potent growth inhibition in multiple patient-derived glioma stem cells. Using a pharmacokinetics- and pharmacodynamics-driven approach, I demonstrate that quisinostat is a brain-penetrant molecule that reduces tumor burden in flank and orthotopic models of GBM and significantly extends survival both alone and in combination with radiotherapy. The work presented in this thesis thereby unveils the non-redundant functions of HDAC1 in therapy- resistant glioma stem cells and identifies a brain-penetrant HDACi with higher selectivity towards HDAC1 as a potent radiosensitizer in preclinical models of GBM. Together, these results provide a rationale for developing quisinostat as a potential adjuvant therapy for the treatment of GBM.
ContributorsLo Cascio, Costanza (Author) / LaBaer, Joshua (Thesis advisor) / Mehta, Shwetal (Committee member) / Mirzadeh, Zaman (Committee member) / Mangone, Marco (Committee member) / Paek, Andrew (Committee member) / Arizona State University (Publisher)
Created2022
171500-Thumbnail Image.png
Description
Advances in sequencing technology have generated an enormous amount of data over the past decade. Equally advanced computational methods are needed to conduct comparative and functional genomic studies on these datasets, in particular tools that appropriately interpret indels within an evolutionary framework. The evolutionary history of indels is complex and

Advances in sequencing technology have generated an enormous amount of data over the past decade. Equally advanced computational methods are needed to conduct comparative and functional genomic studies on these datasets, in particular tools that appropriately interpret indels within an evolutionary framework. The evolutionary history of indels is complex and often involves repetitive genomic regions, which makes identification, alignment, and annotation difficult. While previous studies have found that indel lengths in both deoxyribonucleic acid and proteins obey a power law, probabilistic models for indel evolution have rarely been explored due to their computational complexity. In my research, I first explore an application of an expectation-maximization algorithm for maximum-likelihood training of a codon substitution model. I demonstrate the training accuracy of the expectation-maximization on my substitution model. Then I apply this algorithm on a published 90 pairwise species dataset and find a negative correlation between the branch length and non-synonymous selection coefficient. Second, I develop a post-alignment fixation method to profile each indel event into three different phases according to its codon position. Because current codon-aware models can only identify the indels by placing the gaps between codons and lead to the misalignment of the sequences. I find that the mouse-rat species pair is under purifying selection by looking at the proportion difference of the indel phases. I also demonstrate the power of my sliding-window method by comparing the post-aligned and original gap positions. Third, I create an indel-phase moore machine including the indel rates of three phases, length distributions, and codon substitution models. Then I design a gillespie simulation that is capable of generating true sequence alignments. Next I develop an importance sampling method within the expectation-maximization algorithm that can successfully train the indel-phase model and infer accurate parameter estimates from alignments. Finally, I extend the indel phase analysis to the 90 pairwise species dataset across three alignment methods, including Mafft+sw method developed in chapter 3, coati-sampling methods applied in chapter 4, and coati-max method. Also I explore a non-linear relationship between the dN/dS and Zn/(Zn+Zs) ratio across 90 species pairs.
ContributorsZhu, Ziqi (Author) / Cartwright, Reed A (Thesis advisor) / Taylor, Jay (Committee member) / Wideman, Jeremy (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2022
171971-Thumbnail Image.png
Description
Protein-nucleic acid interactions are ubiquitous in biological systems playing a pivotal role in fundamental processes such as replication, transcription and translation. These interactions have been extensively used to develop biosensors, imaging techniques and diagnostic tools.This dissertation focuses on design of a small molecule responsive biosensor that employs transcription factor/deoxyribonucleic acid

Protein-nucleic acid interactions are ubiquitous in biological systems playing a pivotal role in fundamental processes such as replication, transcription and translation. These interactions have been extensively used to develop biosensors, imaging techniques and diagnostic tools.This dissertation focuses on design of a small molecule responsive biosensor that employs transcription factor/deoxyribonucleic acid (DNA) interactions to detect 10 different analytes including antibiotics such as tetracyclines and erythromycin. The biosensor harnesses the multi-turnover collateral cleavage activity of Cas12a to provide signal amplification in less than an hour that can be monitored using fluorescence as well as on paper based diagnostic devices. In addition, the functionality of this assay was preserved when testing tap water and wastewater spiked with doxycycline. Overall, this biosensor has potential to expand the range of small molecule detection and can be used to identify environmental contaminants. In second part of the dissertation, interactions between nonribosomal peptide synthetases (NRPS) and ribonucleic acid (RNA) were utilized for programming the synthesis of nonribosomal peptides. RNA scaffolds harboring peptide binding aptamers and interconnected using kissing loops to guide the assembly of NRPS modules modified with corresponding aptamer-binding peptides were built. A successful chimeric assembly of Ent synthetase modules was shown that was characterized by the production of Enterobactin siderophore. It was found that the programmed RNA/NRPS assembly could achieve up to 60% of the yield of wild-type biosynthetic pathway of the iron-chelator enterobactin. Finally, a cas12a-based detection method for discriminating short tandem repeats where a toehold exchange mechanism was designed to distinguish different numbers of repeats found in Huntington’s disease, Spinocerebellar ataxia type 10 and type 36. It was observed that the system discriminates well when lesser number of repeats are present and provides weaker resolution as the size of DNA strands increases. Additionally, the system can identify Kelch13 mutations such as P553L, N458Y and F446I from the wildtype sequence for Artemisinin resistance detection. This dissertation demonstrates the great utility of harnessing protein-nucleic acid interactions to construct biomolecular devices for detecting clinically relevant nucleic acid mutations, a variety of small molecule analyte and programming the production of useful molecules.
ContributorsChaudhary, Soma (Author) / Green, Alexander (Thesis advisor) / Stephanopoulos, Nicholas (Committee member) / Mangone, Marco (Committee member) / Arizona State University (Publisher)
Created2022
190960-Thumbnail Image.png
Description
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, declared in March 2020 resulted in an unprecedented scientific effort that led to the deployment in less than a year of several vaccines to prevent severe disease, hospitalizations, and death from coronavirus disease 2019 (COVID-19). Most vaccine models focus on the

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, declared in March 2020 resulted in an unprecedented scientific effort that led to the deployment in less than a year of several vaccines to prevent severe disease, hospitalizations, and death from coronavirus disease 2019 (COVID-19). Most vaccine models focus on the production of neutralizing antibodies against the spike (S) to prevent infection. As the virus evolves, new variants emerge that evade neutralizing antibodies produced by natural infection and vaccination, while memory T cell responses are long-lasting and resilient to most of the changes found in variants of concern (VOC). Several lines of evidence support the study of T cell-mediated immunity in SARS-CoV-2 infections. First, T cell reactivity against SARS-CoV-2 is found in both (cluster of differentiation) CD4+ and CD8+ T cell compartments in asymptomatic, mild, and severe recovered COVID-19 patients. Second, an early and stronger CD8+ T cell response correlates with less severe COVID-19 disease [1-4]. Third, both CD4+ and CD8+ T cells that are reactive to SARS-CoV-2 viral antigens are found in healthy unexposed individuals suggesting that cross-reactive and conserved epitopes may be protective against infection. The current study is focused on the T cell-mediated response, with special attention to conserved, non-spike-cross-reactive epitopes that may be protective against SARS-CoV-2. The first chapter reviews the importance of epitope prediction in understanding the T cell-mediated responses to a pathogen. The second chapter centers on the validation of SARS-CoV-2 CD8+ T cell predicted peptides to find conserved, immunodominant, and immunoprevalent epitopes that can be incorporated into the next generation of vaccines against severe COVID-19 disease. The third chapter explores pre-existing immunity to SARS-CoV-2 in a pre-pandemic cohort and finds two highly immunogenic epitopes that are conserved among human common cold coronaviruses (HCoVs). To end, the fourth chapter explores the concept of T cell receptor (TCR) cross-reactivity by isolating SARS-CoV-2-reactive TCRs to elucidate the mechanisms of cross-reactivity to SARS-CoV-2 and other human coronaviruses (HCoVs).
ContributorsCarmona, Jacqueline (Author) / Anderson, Karen S (Thesis advisor) / Lake, Douglas (Thesis advisor) / Maley, Carlo (Committee member) / Mangone, Marco (Committee member) / LaBaer, Joshua (Committee member) / Arizona State University (Publisher)
Created2023