Matching Items (21)
Filtering by

Clear all filters

152003-Thumbnail Image.png
Description
We solve the problem of activity verification in the context of sustainability. Activity verification is the process of proving the user assertions pertaining to a certain activity performed by the user. Our motivation lies in incentivizing the user for engaging in sustainable activities like taking public transport or recycling. Such

We solve the problem of activity verification in the context of sustainability. Activity verification is the process of proving the user assertions pertaining to a certain activity performed by the user. Our motivation lies in incentivizing the user for engaging in sustainable activities like taking public transport or recycling. Such incentivization schemes require the system to verify the claim made by the user. The system verifies these claims by analyzing the supporting evidence captured by the user while performing the activity. The proliferation of portable smart-phones in the past few years has provided us with a ubiquitous and relatively cheap platform, having multiple sensors like accelerometer, gyroscope, microphone etc. to capture this evidence data in-situ. In this research, we investigate the supervised and semi-supervised learning techniques for activity verification. Both these techniques make use the data set constructed using the evidence submitted by the user. Supervised learning makes use of annotated evidence data to build a function to predict the class labels of the unlabeled data points. The evidence data captured can be either unimodal or multimodal in nature. We use the accelerometer data as evidence for transportation mode verification and image data as evidence for recycling verification. After training the system, we achieve maximum accuracy of 94% when classifying the transport mode and 81% when detecting recycle activity. In the case of recycle verification, we could improve the classification accuracy by asking the user for more evidence. We present some techniques to ask the user for the next best piece of evidence that maximizes the probability of classification. Using these techniques for detecting recycle activity, the accuracy increases to 93%. The major disadvantage of using supervised models is that it requires extensive annotated training data, which expensive to collect. Due to the limited training data, we look at the graph based inductive semi-supervised learning methods to propagate the labels among the unlabeled samples. In the semi-supervised approach, we represent each instance in the data set as a node in the graph. Since it is a complete graph, edges interconnect these nodes, with each edge having some weight representing the similarity between the points. We propagate the labels in this graph, based on the proximity of the data points to the labeled nodes. We estimate the performance of these algorithms by measuring how close the probability distribution of the data after label propagation is to the probability distribution of the ground truth data. Since labeling has a cost associated with it, in this thesis we propose two algorithms that help us in selecting minimum number of labeled points to propagate the labels accurately. Our proposed algorithm achieves a maximum of 73% increase in performance when compared to the baseline algorithm.
ContributorsDesai, Vaishnav (Author) / Sundaram, Hari (Thesis advisor) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
152100-Thumbnail Image.png
Description
Our research focuses on finding answers through decentralized search, for complex, imprecise queries (such as "Which is the best hair salon nearby?") in situations where there is a spatiotemporal constraint (say answer needs to be found within 15 minutes) associated with the query. In general, human networks are good in

Our research focuses on finding answers through decentralized search, for complex, imprecise queries (such as "Which is the best hair salon nearby?") in situations where there is a spatiotemporal constraint (say answer needs to be found within 15 minutes) associated with the query. In general, human networks are good in answering imprecise queries. We try to use the social network of a person to answer his query. Our research aims at designing a framework that exploits the user's social network in order to maximize the answers for a given query. Exploiting an user's social network has several challenges. The major challenge is that the user's immediate social circle may not possess the answer for the given query, and hence the framework designed needs to carry out the query diffusion process across the network. The next challenge involves in finding the right set of seeds to pass the query to in the user's social circle. One other challenge is to incentivize people in the social network to respond to the query and thereby maximize the quality and quantity of replies. Our proposed framework is a mobile application where an individual can either respond to the query or forward it to his friends. We simulated the query diffusion process in three types of graphs: Small World, Random and Preferential Attachment. Given a type of network and a particular query, we carried out the query diffusion by selecting seeds based on attributes of the seed. The main attributes are Topic relevance, Replying or Forwarding probability and Time to Respond. We found that there is a considerable increase in the number of replies attained, even without saturating the user's network, if we adopt an optimal seed selection process. We found the output of the optimal algorithm to be satisfactory as the number of replies received at the interrogator's end was close to three times the number of neighbors an interrogator has. We addressed the challenge of incentivizing people to respond by associating a particular amount of points for each query asked, and awarding the same to people involved in answering the query. Thus, we aim to design a mobile application based on our proposed framework so that it helps in maximizing the replies for the interrogator's query by diffusing the query across his/her social network.
ContributorsSwaminathan, Neelakantan (Author) / Sundaram, Hari (Thesis advisor) / Davulcu, Hasan (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
152310-Thumbnail Image.png
Description
The wide adoption and continued advancement of information and communications technologies (ICT) have made it easier than ever for individuals and groups to stay connected over long distances. These advances have greatly contributed in dramatically changing the dynamics of the modern day workplace to the point where it is now

The wide adoption and continued advancement of information and communications technologies (ICT) have made it easier than ever for individuals and groups to stay connected over long distances. These advances have greatly contributed in dramatically changing the dynamics of the modern day workplace to the point where it is now commonplace to see large, distributed multidisciplinary teams working together on a daily basis. However, in this environment, motivating, understanding, and valuing the diverse contributions of individual workers in collaborative enterprises becomes challenging. To address these issues, this thesis presents the goals, design, and implementation of Taskville, a distributed workplace game played by teams on large, public displays. Taskville uses a city building metaphor to represent the completion of individual and group tasks within an organization. Promising results from two usability studies and two longitudinal studies at a multidisciplinary school demonstrate that Taskville supports personal reflection and improves team awareness through an engaging workplace activity.
ContributorsNikkila, Shawn (Author) / Sundaram, Hari (Thesis advisor) / Byrne, Daragh (Committee member) / Davulcu, Hasan (Committee member) / Olson, Loren (Committee member) / Arizona State University (Publisher)
Created2013
149461-Thumbnail Image.png
Description
This thesis investigates the role of activity visualization tools in increasing group awareness at the workspace. Today, electronic calendaring tools are widely used in the workplace. The primary function is to enable each person maintain a work schedule. They also are used to schedule meetings and share work details when

This thesis investigates the role of activity visualization tools in increasing group awareness at the workspace. Today, electronic calendaring tools are widely used in the workplace. The primary function is to enable each person maintain a work schedule. They also are used to schedule meetings and share work details when appropriate. However, a key limitation of current tools is that they do not enable people in the workplace to understand the activity of the group as a whole. A tool that increases group awareness would promote reflection; it would enable thoughtful engagement with one's co-workers. I have developed two tools: the first tool enables the worker to examine detailed task information of one's own tasks, within the context of his/her peers' anonymized task data. The second tool is a public display to promote group reflection. I have used an iterative design methodology to refine the tools. I developed ActivityStream desktop tool that enables users to examine the detailed information of their own activities and the aggregate information of other peers' activities. ActivityStream uses a client-server architecture. The server collected activity data from each user by parsing RSS feeds associated with their preferred online calendaring and task management tool, on a daily basis. The client software displays personalized aggregate data and user specific tasks, including task types. The client display visualizes the activity data at multiple time scales. The activity data for each user is represented though discrete blocks; interacting with the block will reveal task details. The activity of the rest of the group is anonymized and aggregated. ActivityStream visualizes the aggregated data via Bezier curves. I developed ActivityStream public display that shows a group people's activity levels change over time to promote group reflection. In particular, the public display shows the anonymized task activity data, over the course of one year. The public display visualizes data for each user using a Bezier curve. The display shows data from all users simultaneously. This representation enables users to reflect on the relationships across the group members, over the course of one year. The survey results revealed that users are more aware of their peers' activities in the workspace.
ContributorsZhang, Lu (Author) / Sundaram, Hari (Thesis advisor) / Qian, Gang (Thesis advisor) / Kelliher, Aisling (Committee member) / Arizona State University (Publisher)
Created2010
149464-Thumbnail Image.png
Description
Online social networks, including Twitter, have expanded in both scale and diversity of content, which has created significant challenges to the average user. These challenges include finding relevant information on a topic and building social ties with like-minded individuals. The fundamental question addressed by this thesis is if an individual

Online social networks, including Twitter, have expanded in both scale and diversity of content, which has created significant challenges to the average user. These challenges include finding relevant information on a topic and building social ties with like-minded individuals. The fundamental question addressed by this thesis is if an individual can leverage social network to search for information that is relevant to him or her. We propose to answer this question by developing computational algorithms that analyze a user's social network. The features of the social network we analyze include the network topology and member communications of a specific user's social network. Determining the "social value" of one's contacts is a valuable outcome of this research. The algorithms we developed were tested on Twitter, which is an extremely popular social network. Twitter was chosen due to its popularity and a majority of the communications artifacts on Twitter is publically available. In this work, the social network of a user refers to the "following relationship" social network. Our algorithm is not specific to Twitter, and is applicable to other social networks, where the network topology and communications are accessible. My approaches are as follows. For a user interested in using the system, I first determine the immediate social network of the user as well as the social contacts for each person in this network. Afterwards, I establish and extend the social network for each user. For each member of the social network, their tweet data are analyzed and represented by using a word distribution. To accomplish this, I use WordNet, a popular lexical database, to determine semantic similarity between two words. My mechanism of search combines both communication distance between two users and social relationships to determine the search results. Additionally, I developed a search interface, where a user can interactively query the system. I conducted preliminary user study to evaluate the quality and utility of my method and system against several baseline methods, including the default Twitter search. The experimental results from the user study indicate that my method is able to find relevant people and identify valuable contacts in one's social circle based on the query. The proposed system outperforms baseline methods in terms of standard information retrieval metrics.
ContributorsXu, Ke (Author) / Sundaram, Hari (Thesis advisor) / Ye, Jieping (Committee member) / Kelliher, Aisling (Committee member) / Arizona State University (Publisher)
Created2010
149449-Thumbnail Image.png
Description
Advances in the area of ubiquitous, pervasive and wearable computing have resulted in the development of low band-width, data rich environmental and body sensor networks, providing a reliable and non-intrusive methodology for capturing activity data from humans and the environments they inhabit. Assistive technologies that promote independent living amongst elderly

Advances in the area of ubiquitous, pervasive and wearable computing have resulted in the development of low band-width, data rich environmental and body sensor networks, providing a reliable and non-intrusive methodology for capturing activity data from humans and the environments they inhabit. Assistive technologies that promote independent living amongst elderly and individuals with cognitive impairment are a major motivating factor for sensor-based activity recognition systems. However, the process of discerning relevant activity information from these sensor streams such as accelerometers is a non-trivial task and is an on-going research area. The difficulty stems from factors such as spatio-temporal variations in movement patterns induced by different individuals and contexts, sparse occurrence of relevant activity gestures in a continuous stream of irrelevant movements and the lack of real-world data for training learning algorithms. This work addresses these challenges in the context of wearable accelerometer-based simple activity and gesture recognition. The proposed computational framework utilizes discriminative classifiers for learning the spatio-temporal variations in movement patterns and demonstrates its effectiveness through a real-time simple activity recognition system and short duration, non- repetitive activity gesture recognition. Furthermore, it proposes adaptive discriminative threshold models trained only on relevant activity gestures for filtering irrelevant movement patterns in a continuous stream. These models are integrated into a gesture spotting network for detecting activity gestures involved in complex activities of daily living. The framework addresses the lack of real world data for training, by using auxiliary, yet related data samples for training in a transfer learning setting. Finally the problem of predicting activity tasks involved in the execution of a complex activity of daily living is described and a solution based on hierarchical Markov models is discussed and evaluated.
ContributorsChatapuram Krishnan, Narayanan (Author) / Panchanathan, Sethuraman (Thesis advisor) / Sundaram, Hari (Committee member) / Ye, Jieping (Committee member) / Li, Baoxin (Committee member) / Cook, Diane (Committee member) / Arizona State University (Publisher)
Created2010
152541-Thumbnail Image.png
Description
Contemporary online social platforms present individuals with social signals in the form of news feed on their peers' activities. On networks such as Facebook, Quora, network operator decides how that information is shown to an individual. Then the user, with her own interests and resource constraints selectively acts on a

Contemporary online social platforms present individuals with social signals in the form of news feed on their peers' activities. On networks such as Facebook, Quora, network operator decides how that information is shown to an individual. Then the user, with her own interests and resource constraints selectively acts on a subset of items presented to her. The network operator again, shows that activity to a selection of peers, and thus creating a behavioral loop. That mechanism of interaction and information flow raises some very interesting questions such as: can network operator design social signals to promote a particular activity like sustainability, public health care awareness, or to promote a specific product? The focus of my thesis is to answer that question. In this thesis, I develop a framework to personalize social signals for users to guide their activities on an online platform. As the result, we gradually nudge the activity distribution on the platform from the initial distribution p to the target distribution q. My work is particularly applicable to guiding collaborations, guiding collective actions, and online advertising. In particular, I first propose a probabilistic model on how users behave and how information flows on the platform. The main part of this thesis after that discusses the Influence Individuals through Social Signals (IISS) framework. IISS consists of four main components: (1) Learner: it learns users' interests and characteristics from their historical activities using Bayesian model, (2) Calculator: it uses gradient descent method to compute the intermediate activity distributions, (3) Selector: it selects users who can be influenced to adopt or drop specific activities, (4) Designer: it personalizes social signals for each user. I evaluate the performance of IISS framework by simulation on several network topologies such as preferential attachment, small world, and random. I show that the framework gradually nudges users' activities to approach the target distribution. I use both simulation and mathematical method to analyse convergence properties such as how fast and how close we can approach the target distribution. When the number of activities is 3, I show that for about 45% of target distributions, we can achieve KL-divergence as low as 0.05. But for some other distributions KL-divergence can be as large as 0.5.
ContributorsLe, Tien D (Author) / Sundaram, Hari (Thesis advisor) / Davulcu, Hasan (Thesis advisor) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2014
152906-Thumbnail Image.png
Description
Multidimensional data have various representations. Thanks to their simplicity in modeling multidimensional data and the availability of various mathematical tools (such as tensor decompositions) that support multi-aspect analysis of such data, tensors are increasingly being used in many application domains including scientific data management, sensor data management, and social network

Multidimensional data have various representations. Thanks to their simplicity in modeling multidimensional data and the availability of various mathematical tools (such as tensor decompositions) that support multi-aspect analysis of such data, tensors are increasingly being used in many application domains including scientific data management, sensor data management, and social network data analysis. Relational model, on the other hand, enables semantic manipulation of data using relational operators, such as projection, selection, Cartesian-product, and set operators. For many multidimensional data applications, tensor operations as well as relational operations need to be supported throughout the data life cycle. In this thesis, we introduce a tensor-based relational data model (TRM), which enables both tensor- based data analysis and relational manipulations of multidimensional data, and define tensor-relational operations on this model. Then we introduce a tensor-relational data management system, so called, TensorDB. TensorDB is based on TRM, which brings together relational algebraic operations (for data manipulation and integration) and tensor algebraic operations (for data analysis). We develop optimization strategies for tensor-relational operations in both in-memory and in-database TensorDB. The goal of the TRM and TensorDB is to serve as a single environment that supports the entire life cycle of data; that is, data can be manipulated, integrated, processed, and analyzed.
ContributorsKim, Mijung (Author) / Candan, K. Selcuk (Thesis advisor) / Davulcu, Hasan (Committee member) / Sundaram, Hari (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2014
153269-Thumbnail Image.png
Description
Social media platforms such as Twitter, Facebook, and blogs have emerged as valuable

- in fact, the de facto - virtual town halls for people to discover, report, share and

communicate with others about various types of events. These events range from

widely-known events such as the U.S Presidential debate to smaller scale,

Social media platforms such as Twitter, Facebook, and blogs have emerged as valuable

- in fact, the de facto - virtual town halls for people to discover, report, share and

communicate with others about various types of events. These events range from

widely-known events such as the U.S Presidential debate to smaller scale, local events

such as a local Halloween block party. During these events, we often witness a large

amount of commentary contributed by crowds on social media. This burst of social

media responses surges with the "second-screen" behavior and greatly enriches the

user experience when interacting with the event and people's awareness of an event.

Monitoring and analyzing this rich and continuous flow of user-generated content can

yield unprecedentedly valuable information about the event, since these responses

usually offer far more rich and powerful views about the event that mainstream news

simply could not achieve. Despite these benefits, social media also tends to be noisy,

chaotic, and overwhelming, posing challenges to users in seeking and distilling high

quality content from that noise.

In this dissertation, I explore ways to leverage social media as a source of information and analyze events based on their social media responses collectively. I develop, implement and evaluate EventRadar, an event analysis toolbox which is able to identify, enrich, and characterize events using the massive amounts of social media responses. EventRadar contains three automated, scalable tools to handle three core event analysis tasks: Event Characterization, Event Recognition, and Event Enrichment. More specifically, I develop ET-LDA, a Bayesian model and SocSent, a matrix factorization framework for handling the Event Characterization task, i.e., modeling characterizing an event in terms of its topics and its audience's response behavior (via ET-LDA), and the sentiments regarding its topics (via SocSent). I also develop DeMa, an unsupervised event detection algorithm for handling the Event Recognition task, i.e., detecting trending events from a stream of noisy social media posts. Last, I develop CrowdX, a spatial crowdsourcing system for handling the Event Enrichment task, i.e., gathering additional first hand information (e.g., photos) from the field to enrich the given event's context.

Enabled by EventRadar, it is more feasible to uncover patterns that have not been

explored previously and re-validating existing social theories with new evidence. As a

result, I am able to gain deep insights into how people respond to the event that they

are engaged in. The results reveal several key insights into people's various responding

behavior over the event's timeline such the topical context of people's tweets does not

always correlate with the timeline of the event. In addition, I also explore the factors

that affect a person's engagement with real-world events on Twitter and find that

people engage in an event because they are interested in the topics pertaining to

that event; and while engaging, their engagement is largely affected by their friends'

behavior.
ContributorsHu, Yuheng (Author) / Kambhampati, Subbarao (Thesis advisor) / Horvitz, Eric (Committee member) / Krumm, John (Committee member) / Liu, Huan (Committee member) / Sundaram, Hari (Committee member) / Arizona State University (Publisher)
Created2014
152778-Thumbnail Image.png
Description
Software has a great impact on the energy efficiency of any computing system--it can manage the components of a system efficiently or inefficiently. The impact of software is amplified in the context of a wearable computing system used for activity recognition. The design space this platform opens up is immense

Software has a great impact on the energy efficiency of any computing system--it can manage the components of a system efficiently or inefficiently. The impact of software is amplified in the context of a wearable computing system used for activity recognition. The design space this platform opens up is immense and encompasses sensors, feature calculations, activity classification algorithms, sleep schedules, and transmission protocols. Design choices in each of these areas impact energy use, overall accuracy, and usefulness of the system. This thesis explores methods software can influence the trade-off between energy consumption and system accuracy. In general the more energy a system consumes the more accurate will be. We explore how finding the transitions between human activities is able to reduce the energy consumption of such systems without reducing much accuracy. We introduce the Log-likelihood Ratio Test as a method to detect transitions, and explore how choices of sensor, feature calculations, and parameters concerning time segmentation affect the accuracy of this method. We discovered an approximate 5X increase in energy efficiency could be achieved with only a 5% decrease in accuracy. We also address how a system's sleep mode, in which the processor enters a low-power state and sensors are turned off, affects a wearable computing platform that does activity recognition. We discuss the energy trade-offs in each stage of the activity recognition process. We find that careful analysis of these parameters can result in great increases in energy efficiency if small compromises in overall accuracy can be tolerated. We call this the ``Great Compromise.'' We found a 6X increase in efficiency with a 7% decrease in accuracy. We then consider how wireless transmission of data affects the overall energy efficiency of a wearable computing platform. We find that design decisions such as feature calculations and grouping size have a great impact on the energy consumption of the system because of the amount of data that is stored and transmitted. For example, storing and transmitting vector-based features such as FFT or DCT do not compress the signal and would use more energy than storing and transmitting the raw signal. The effect of grouping size on energy consumption depends on the feature. For scalar features energy consumption is proportional in the inverse of grouping size, so it's reduced as grouping size goes up. For features that depend on the grouping size, such as FFT, energy increases with the logarithm of grouping size, so energy consumption increases slowly as grouping size increases. We find that compressing data through activity classification and transition detection significantly reduces energy consumption and that the energy consumed for the classification overhead is negligible compared to the energy savings from data compression. We provide mathematical models of energy usage and data generation, and test our ideas using a mobile computing platform, the Texas Instruments Chronos watch.
ContributorsBoyd, Jeffrey Michael (Author) / Sundaram, Hari (Thesis advisor) / Li, Baoxin (Thesis advisor) / Shrivastava, Aviral (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2014