Matching Items (32)
Filtering by

Clear all filters

156831-Thumbnail Image.png
Description
Timing performance is sensitive to fluctuations in time and motivation, thus interval timing and motivation are either inseparable or conflated processes. A behavioral systems model (e.g., Timberlake, 2000) of timing performance (Chapter 1) suggests that timing performance in externally-initiated (EI) procedures conflates behavioral modes differentially sensitive to motivation, but that

Timing performance is sensitive to fluctuations in time and motivation, thus interval timing and motivation are either inseparable or conflated processes. A behavioral systems model (e.g., Timberlake, 2000) of timing performance (Chapter 1) suggests that timing performance in externally-initiated (EI) procedures conflates behavioral modes differentially sensitive to motivation, but that response-initiated (RI) procedures potentially dissociate these behavioral modes. That is, timing performance in RI procedures is expected to not conflate these behavioral modes. According to the discriminative RI hypothesis, as initiating-responses become progressively discriminable from target responses, initiating-responses increasingly dissociate interval timing and motivation. Rats were trained in timing procedures in which a switch from a Short to a Long interval indexes timing performance (a latency-to-switch, LTS), and were then challenged with pre-feeding and extinction probes. In experiments 1 (Chapter 2) and 2 (Chapter 3), discriminability of initiating-responses was varied as a function of time, location, and form for rats trained in a switch-timing procedure. In experiment 3 (Chapter 4), the generalizability of the discriminative RI hypothesis was evaluated in rats trained in a temporal bisection procedure. In experiment 3, but not 1 and 2, RI enhanced temporal control of LTSs relative to EI. In experiments 1 and 2, the robustness of LTS medians to pre-feeding but not extinction increased with the discriminability of initiating-responses from target responses. In experiment 3, the mean LTS was robust to pre-feeding in EI and RI. In all three experiments, pre-feeding increased LTS variability in EI and RI. These results provide moderate support for the discriminative RI hypothesis, indicating that initiating-responses selectively and partially dissociate interval timing and motivation processes. Implications for the study of cognition and motivation processes are discussed (Chapter 5).
ContributorsDaniels, Carter W (Author) / Sanabria, Federico (Thesis advisor) / McClure, Samuel M. (Committee member) / Wynne, Clive D.L. (Committee member) / Olive, Michael F. (Committee member) / Arizona State University (Publisher)
Created2018
153634-Thumbnail Image.png
Description
People commonly make decisions and choices that could be delayed until a later time. This investigation examines two factors that may be especially important in these types of decisions: resource stability and comparison target. I propose that these two factors interact to affect whether individuals tend to adopt a delay

People commonly make decisions and choices that could be delayed until a later time. This investigation examines two factors that may be especially important in these types of decisions: resource stability and comparison target. I propose that these two factors interact to affect whether individuals tend to adopt a delay strategy or whether they engage in more present-oriented strategy. Specifically, this thesis study tested whether picturing one’s ideal led to the adoption of a delay strategy to a greater extent when resources were stable and to a lesser extent when resources were unstable. Participants read a house-hunting scenario in which the market was stable or unstable, and either pictured their ideal house at the beginning of the task or did not. As expected, participants in the stable housing market were more willing to delay choosing a house, though the predicted interaction between resource stability and comparison target did not emerge. Contrary to the predictions, however, participants who pictured their ideal house were more willing to choose a house immediately and were more satisfied with the house they chose. Overall, these findings did not lend support to the main argument of this investigation that picturing one’s ideal would promote a delay strategy under stable resource conditions. The finding that participants preferred immediate choice after picturing their ideal may have interesting implications for persuasion and advertising.
ContributorsAdelman, Robert Mark (Author) / Kwan, Virginia S Y (Thesis advisor) / Kenrick, Douglas T. (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2015
153854-Thumbnail Image.png
Description
Evidence from the 20th century demonstrated that early life stress (ELS) produces long lasting neuroendocrine and behavioral effects related to an increased vulnerability towards psychiatric illnesses such as major depressive disorder, post-traumatic stress disorder, schizophrenia, and substance use disorder. Substance use disorders (SUDs) are complex neurological and behavioral psychiatric illnesses.

Evidence from the 20th century demonstrated that early life stress (ELS) produces long lasting neuroendocrine and behavioral effects related to an increased vulnerability towards psychiatric illnesses such as major depressive disorder, post-traumatic stress disorder, schizophrenia, and substance use disorder. Substance use disorders (SUDs) are complex neurological and behavioral psychiatric illnesses. The development, maintenance, and relapse of SUDs involve multiple brain systems and are affected by many variables, including socio-economic and genetic factors. Pre-clinical studies demonstrate that ELS affects many of the same systems, such as the reward circuitry and executive function involved with addiction-like behaviors. Previous research has focused on cocaine, ethanol, opiates, and amphetamine, while few studies have investigated ELS and methamphetamine (METH) vulnerability. METH is a highly addictive psychostimulant that when abused, has deleterious effects on the user and society. However, a critical unanswered question remains; how do early life experiences modulate both neural systems and behavior in adulthood? The emerging field of neuroepigenetics provides a potential answer to this question. Methyl CpG binding protein 2 (MeCP2), an epigenetic tag, has emerged as one possible mediator between initial drug use and the transition to addiction. Additionally, there are various neural systems that undergo long lasting epigenetics changes after ELS, such as the response of the hypothalamo-pituitary-adrenal (HPA) axis to stressors. Despite this, little attention has been given to the interactions between ELS, epigenetics, and addiction vulnerability. The studies described herein investigated the effects of ELS on METH self-administration (SA) in adult male rats. Next, we investigated the effects of ELS and METH SA on MeCP2 expression in the nucleus accumbens and dorsal striatum. Additionally, we investigated the effects of virally-mediated knockdown of MeCP2 expression in the nucleus accumbens core on METH SA, motivation to obtain METH under conditions of increasing behavioral demand, and reinstatement of METH-seeking in rats with and without a history of ELS. The results of these studies provide insights into potential epigenetic mechanisms by which ELS can produce an increased vulnerability to addiction in adulthood. Moreover, these studies shed light on possible novel molecular targets for treating addiction in individuals with a history of ELS.
ContributorsLewis, Candace (Author) / Olive, M. Foster (Thesis advisor) / Hammer, Ronald (Committee member) / Neisewander, Janet (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2015
153683-Thumbnail Image.png
Description
ADHD is a childhood neurobehavioral disorder characterized by inordinate levels of hyperactivity, inattention and impulsivity. The inability to withhold a reinforced response, or response inhibition capacity (RIC), is one aspect of impulsivity associated with ADHD. The first goal of this dissertation was to evaluate the fixed minimum interval (FMI) schedule

ADHD is a childhood neurobehavioral disorder characterized by inordinate levels of hyperactivity, inattention and impulsivity. The inability to withhold a reinforced response, or response inhibition capacity (RIC), is one aspect of impulsivity associated with ADHD. The first goal of this dissertation was to evaluate the fixed minimum interval (FMI) schedule as a method for assessing RIC. Chapter 2 showed that latencies were substantially more sensitive than FMI-derived estimates of RIC to the effects of pre-feeding and changes in rate and magnitude of reinforcement. Chapter 3 examined the ability of the FMI to discriminate between spontaneously hypertensive rats (SHR), an animal model of ADHD, and Wistar Kyoto (WKY) controls. Results from Chapter 3 showed that RIC was not substantially different between SHR and WKY rats. However, latencies were significantly shorter for SHRs than for WKYs suggesting incentive motivation differed between strains. The second goal of this dissertation was to examine the sensitivity of the SHR to nicotine. ADHD is a risk factor for tobacco dependence. The goal of Chapters 4 and 5 was to determine whether the SHR provided a model of ADHD-related tobacco sensitivity. Chapter 4 examined nicotine's locomotor and rewarding effects in adolescent SHRs using the conditioned place preference (CPP) procedure. SHRs developed CPP to the highest nicotine dose tested and were sensitive to nicotine's locomotor-enhancing properties. WKY controls did not develop CPP to any nicotine dose tested and were not sensitive to nicotine's locomotor properties. However, it is likely that nicotine effects were obscured by a pseudo-conditioning to saline in WKYs. Chapter 5 demonstrated that SHRs were more active than WKYs in the open-field but not in the Rotorat apparatus. Results also showed that SHRs and WKYs were both sensitive to nicotine's locomotor sensitizing effects. However, WKYs were more sensitive than SHRs to nicotine's locomotor suppressing effects. Collectively, results from Chapters 4 and 5 show that SHRs are sensitive to the rewarding and locomotor-enhancing properties of nicotine. However, more research is necessary to confirm that SHRs are a suitable model for studying ADHD-related tobacco use.
ContributorsWatterson, Elizabeth (Author) / Sanabria, Federico (Thesis advisor) / Olive, Foster (Thesis advisor) / Chassin, Laurie (Committee member) / Neisewander, Janet (Committee member) / Arizona State University (Publisher)
Created2015
168640-Thumbnail Image.png
Description
Cocaine use disorders (CUDs) and human immunodeficiency virus (HIV) are a common comorbidity, although it is largely unknown whether HIV interacts with cocaine abstinence to uniquely alter neuroimmune function and whether HIV may modulate the efficacy of medications intended to treat CUDs. My dissertation research demonstrates using preclinical rodent models

Cocaine use disorders (CUDs) and human immunodeficiency virus (HIV) are a common comorbidity, although it is largely unknown whether HIV interacts with cocaine abstinence to uniquely alter neuroimmune function and whether HIV may modulate the efficacy of medications intended to treat CUDs. My dissertation research demonstrates using preclinical rodent models of drug self-administration and craving that systemic exposure to the HIV protein gp120 produces a unique profile of neuroimmune changes within the nucleus accumbens core (NAc core) that is distinct from early cocaine abstinence alone. After a protracted period of abstinence, gp120 exposure abolished the effect of the dopamine D3 receptor (D3R) partial agonist MC-25-41, which successfully attenuated cue-induced cocaine seeking in non-exposed rats. Further probing the role of downstream, intracellular neuroimmune function on cue-induced cocaine seeking, I examined the role of the nuclear factor kappa B (NF-κB) signaling pathway within the NAc core on cue-induced cocaine seeking after a period of protracted abstinence across sex and reinforcer type. I demonstrated that knockdown of the p65 subunit of NF-κB results in a decrease in cue-induced cocaine seeking in males, but not in females. This effect was specific to cocaine, as p65 knockdown did not affect cue-induced sucrose seeking in either males or females. Moreover, I examined expression levels of the extracellular matrix enzyme MMP-9 within the NAc core, as it is regulated by NF-κB and is an important mediator of cue-induced cocaine seeking and associated synaptic plasticity. I demonstrated that males express higher levels of MMP-9 within the NAc compared to females, and that p65 knockdown decreases NAc core MMP-9 in males but not females among cocaine cue-exposed animals. Altogether, these results suggest that immunotherapeutic medications may be useful tools in the treatment of CUDs, particularly among males that are disproportionately impacted by HIV.
ContributorsNamba, Mark Douglas (Author) / Neisewander, Janet L (Thesis advisor) / Olive, M Foster (Thesis advisor) / Sanabria, Federico (Committee member) / Ferguson, Deveroux (Committee member) / Arizona State University (Publisher)
Created2022
168747-Thumbnail Image.png
Description
The capacity to track time in the seconds-to-minutes range, or interval timing, appears to be at least partially dependent on intact hippocampal (HPC) function. The current dissertation sought to dissociate timed responses, non-timed responses, and motivational aspects of behavior in order to propose a role of the HPC in specific

The capacity to track time in the seconds-to-minutes range, or interval timing, appears to be at least partially dependent on intact hippocampal (HPC) function. The current dissertation sought to dissociate timed responses, non-timed responses, and motivational aspects of behavior in order to propose a role of the HPC in specific timing sub-processes. In Chapter 2, effects of dorsal HPC (dHPC) lesions on temporal responding in a switch-timing task revealed a critical role of dHPC in the acquisition of interval timing criteria. Following dHPC lesions, the start time of responding was systemically shortened, in a manner that was enhanced and sustained when encoding a novel long interval, consistent with a memory-based account of dHPC function in timed responding. Chapter 3 investigated effects of chronic stress, which has been shown to reliably induce HPC dendritic retraction, on interval timing, utilizing response-initiated schedules of reinforcement, which facilitate deconvolution of timing and motivation. This revealed task-dependent effects on interval timing and motivation, where stress induced transient effects on motivation in a prospective timing task, but transient effects on the variability of timed responding in a retrospective timing task, consistent with an effect on memory function in interval timing. Chapter 4 sought to bring timed responding, motivation, and non-timed behaviors under stronger procedural control, through the implementation of a response-initiated timing-with-opportunity-cost task, in which a cost is imposed on temporal food-seeking by the presence of a concurrent source of probabilistic reinforcement. This arrangement garnered strong schedule control of behavior, and revealed individual-subject differences in the effects of reward devaluation, such that it affected motivation in some rats, but temporal responding in others. Using this methodology, Chapter 5 investigated initial temporal entrainment of behavior under pharmacological deactivation of dHPC and revealed its critical involvement in updating memory to new temporal contingencies. Together, data from this dissertation contrast with prior conclusions that the HPC is not involved in learning temporal criteria, and instead suggest that its function is indeed critical to encoding temporal intervals in memory.
ContributorsGupta, Tanya A. (Author) / Sanabria, Federico (Thesis advisor) / Conrad, Cheryl (Committee member) / Olive, Foster (Committee member) / McClure, Samuel (Committee member) / Arizona State University (Publisher)
Created2022
189378-Thumbnail Image.png
Description
Variations in menopause etiologies, from surgical manipulation to a natural transition, can impact cognition in both healthy and neurodegenerative aging. Although abundant research has demonstrated impacts from surgical versus transitional menopause, such as variations in timing of menopause, both variations in initiation of menopause and length of time since menopause,

Variations in menopause etiologies, from surgical manipulation to a natural transition, can impact cognition in both healthy and neurodegenerative aging. Although abundant research has demonstrated impacts from surgical versus transitional menopause, such as variations in timing of menopause, both variations in initiation of menopause and length of time since menopause, but not all avenues have been systematically evaluated. Further, assessments of variations in hormone therapies have demonstrated marked outcomes on the brain and cognition in different menopause etiologies, and results can differ depending on type of hormone, combination of hormones, dose, route of administration, among other factors, in regard to healthy aging. Further, the impact of the endocrine system on neurodegenerative disease is multifaceted. Research has highlighted that the endocrine system not only impacts neurodegeneration, such as in Alzheimer’s disease (AD), but that fluctuations in the endocrine system might be strong mediators in disease prevalence and progression. This dissertation seeks to understand how factors such as menopause etiology, biological sex, and hormone therapy impact normative and neurodegenerative aging. Assessments in a rat model of normal aging of progestogen-based hormone therapy given during the transition to menopause demonstrated attenuation of impairment seen with transitional menopause that was working memory specific. In evaluating a rat model of AD, there were distinct trends in neuropathology and associated cognitive changes in males and females with and without gonadal hormone deprivation. Further, assessment of transitional menopause in this AD model yielded an interaction between follicular depletion and genotype for neuropathology that was not present in cognitive assessments. Together, these dissertation chapters highlight that there are a multitude of factors to consider when evaluating effects of menopause and that these variations in experience underscore a need for personalized medicine when selecting therapeutic targets for healthy and neurodegenerative aging that includes consideration of overall hormone milieu and menopause history. Further, these data suggest that the inclusion of males and females in the study of AD-related factors is crucial for understanding disease progression.
ContributorsPena, Veronica L (Author) / Bimonte-Nelson, Heather A (Thesis advisor) / Conrad, Cheryl D (Committee member) / Coleman, Paul (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2023
154368-Thumbnail Image.png
Description
MicroRNAs are small, non-coding transcripts that post-transcriptionally regulate expression of multiple genes. Recently microRNAs have been linked to the etiology of neuropsychiatric disorders, including drug addiction. Following genome-wide sequence analyses, microRNA-495 (miR-495) was found to target several genes within the Knowledgebase of Addiction-Related Genes (KARG) database and to be highly

MicroRNAs are small, non-coding transcripts that post-transcriptionally regulate expression of multiple genes. Recently microRNAs have been linked to the etiology of neuropsychiatric disorders, including drug addiction. Following genome-wide sequence analyses, microRNA-495 (miR-495) was found to target several genes within the Knowledgebase of Addiction-Related Genes (KARG) database and to be highly expressed in the nucleus accumbens (NAc), a pivotal brain region involved in reward and motivation. The central hypothesis of this dissertation is that NAc miR-495 regulates drug abuse-related behavior by targeting several addiction-related genes (ARGs). I tested this hypothesis in two ways: 1) by examining the effects of viral-mediated miR-495 overexpression or inhibition in the NAc of rats on cocaine abuse-related behaviors and gene expression, and 2) by examining changes in NAc miR-495 and ARG expression as a result of brief (i.e., 1 day) or prolonged (i.e., 22 days) cocaine self-administration. I found that behavioral measures known to be sensitive to motivation for cocaine were attenuated by NAc miR-495 overexpression, including resistance to extinction of cocaine conditioned place preference (CPP), cocaine self-administration on a high effort progressive ratio schedule of reinforcement, and cocaine-seeking behavior during both extinction and cocaine-primed reinstatement. These effects appeared specific to cocaine, as there was no effect of NAc miR-495 overexpression on a progressive ratio schedule of food reinforcement. In contrast, behavioral measures known to be sensitive to cocaine reward were not altered, including expression of cocaine CPP and cocaine self-administration under a low effort FR5 schedule of reinforcement. Importantly, the effects were accompanied by decreases in NAc ARG expression, consistent with my hypothesis. In further support, I found that NAc miR-495 levels were reduced and ARG levels were increased in rats following prolonged, but not brief, cocaine self-administration experience. Surprisingly, inhibition of NAc miR-495 expression also decreased both cocaine-seeking behavior during extinction and NAc ARG expression, which may reflect compensatory changes or unexplained complexities in miR-495 regulatory effects. Collectively, the findings suggest that NAc miR-495 regulates ARG expression involved in motivation for cocaine. Therefore, using microRNAs as tools to target several ARGs simultaneously may be useful for future development of addiction therapeutics.
ContributorsBastle, Ryan (Author) / Neisewander, Janet (Thesis advisor) / Newbern, Jason (Committee member) / Nikulina, Ella (Committee member) / Perrone-Bizzozero, Nora (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2016
158795-Thumbnail Image.png
Description
Temporal-order judgments can require integration of self-generated action-events and external sensory information. In a previous study, it was found that participants are biased to perceive one’s own action-events to occur prior to simultaneous external events. This phenomenon, named the “Egocentric Temporal Order Bias”, or ETO bias, was demonstrated as a

Temporal-order judgments can require integration of self-generated action-events and external sensory information. In a previous study, it was found that participants are biased to perceive one’s own action-events to occur prior to simultaneous external events. This phenomenon, named the “Egocentric Temporal Order Bias”, or ETO bias, was demonstrated as a 67% probability for participants to report self-generated events as occurring prior to simultaneous externally-determined events. These results were interpreted as supporting a feed-forward, constructive model of perception. However, the empirical data could support many potential mechanisms. The present study tests whether the ETO bias is driven by attentional differences, feed-forward predictability, or action. These findings support that participants exhibit a bias due to both feed-forward predictability and action, and a Bayesian analysis supports that these effects are quantitatively unique. Therefore, the results indicate that the ETO bias is largely driven by one’s own action, over and above feed-forward predictability.
ContributorsTang, Tim (Author) / Mcbeath, Michael K (Thesis advisor) / Brewer, Gene A. (Committee member) / Sanabria, Federico (Committee member) / Arizona State University (Publisher)
Created2020
158360-Thumbnail Image.png
Description
Post-Traumatic Stress Disorder (PTSD) is characterized by intrusive memories from a traumatic event. Current therapies rarely lead to complete remission. PTSD can be modeled in rodents using chronic stress (creating vulnerable phenotype) combined with fear conditioning (modeling a traumatic experience), resulting in attenuated extinction learning and impaired recall of extinction.

Post-Traumatic Stress Disorder (PTSD) is characterized by intrusive memories from a traumatic event. Current therapies rarely lead to complete remission. PTSD can be modeled in rodents using chronic stress (creating vulnerable phenotype) combined with fear conditioning (modeling a traumatic experience), resulting in attenuated extinction learning and impaired recall of extinction. Studies typically investigate cognition soon after chronic stress ends; however, as days and weeks pass (“rest” period) some cognitive functions may improve compared to soon after stress. Whether a rest period between chronic stress and fear conditioning/extinction would lead to improvements is unclear. In Chapter 2, male rats were chronically stressed by restraint (6hr/d/21d), a reliable method to produce cognitive changes, or assigned to a non-stressed control group (CON). After chronic stress ended, fear conditioning occurred within a day (STR-IMM), or after three (STR-R3) or six weeks (STR-R6). During the first three extinction trials, differences emerged in fear to the non-shock context: STR-R3/R6 showed significantly less fear to the context than did STR-IMM or CON. Differences were unlikely attributable to generalization or to second-order conditioning. Therefore, a rest period following chronic stress may lead to improved fear extinction and discrimination between the conditioned stimulus and environment. In Chapter 3, the infralimbic cortex (IL) was investigated due to the IL’s importance in fear extinction. Rats were infused with chemogenetics to target IL glutamatergic neurons and then assigned to CON, STR-IMM or STR-R3. During the rest period of STR-R3 and the restraint for STR-IMM, the IL was inhibited using CNO (1mg/kg BW, i.p., daily), which ended before behavioral testing. STR-R3 with IL inhibition failed to demonstrate a tone-shock association as spontaneous recovery was not observed. CON with IL inhibition behaved somewhat like STR-IMM; freezing to the extinction context was enhanced. Consequently, inhibiting IL function during the rest period following chronic stress was particularly disruptive for learning in STR-R3, impaired freezing to a safe context for CON, and had no effect in STR-IMM. These studies show that time since the end of chronic stress (recently ended or with a delay) can interact with IL functioning to modify fear learning and response.
ContributorsJudd, Jessica Michelle (Author) / Conrad, Cheryl D. (Thesis advisor) / Sanabria, Federico (Committee member) / Olive, Michael F (Committee member) / Bimonte-Nelson, Heather A. (Committee member) / Arizona State University (Publisher)
Created2020