Matching Items (129)
Filtering by

Clear all filters

151874-Thumbnail Image.png
Description
Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and

Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and a novel wind farm control approach has been modeled. The possibility of using lidar measurements to more fully characterize the wind field is discussed, specifically, terrain effects, spatial variation of winds, power density, and the effect of shear at different layers within the rotor swept area. Various vector retrieval methods have been applied to the lidar data, and results are presented on an elevated terrain-following surface at hub height. The vector retrieval estimates are compared with tower measurements, after interpolation to the appropriate level. CDL data is used to estimate the spatial power density at hub height. Since CDL can measure winds at different vertical levels, an approach for estimating wind power density over the wind turbine rotor-swept area is explored. Sample optimized layouts of wind farm using lidar data and global optimization algorithms, accounting for wake interaction effects, have been explored. An approach to evaluate spatial wind speed and direction estimates from a standard nested Coupled Ocean and Atmosphere Mesoscale Prediction System (COAMPS) model and CDL is presented. The magnitude of spatial difference between observations and simulation for wind energy assessment is researched. Diurnal effects and ramp events as estimated by CDL and COAMPS were inter-compared. Novel wind farm control based on incoming winds and direction input from CDL's is developed. Both yaw and pitch control using scanning CDL for efficient wind farm control is analyzed. The wind farm control optimizes power production and reduces loads on wind turbines for various lidar wind speed and direction inputs, accounting for wind farm wake losses and wind speed evolution. Several wind farm control configurations were developed, for enhanced integrability into the electrical grid. Finally, the value proposition of CDL for a wind farm development, based on uncertainty reduction and return of investment is analyzed.
ContributorsKrishnamurthy, Raghavendra (Author) / Calhoun, Ronald J (Thesis advisor) / Chen, Kangping (Committee member) / Huang, Huei-Ping (Committee member) / Fraser, Matthew (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
151478-Thumbnail Image.png
Description
Gene manipulation techniques, such as RNA interference (RNAi), offer a powerful method for elucidating gene function and discovery of novel therapeutic targets in a high-throughput fashion. In addition, RNAi is rapidly being adopted for treatment of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease, etc. However, a major challenge

Gene manipulation techniques, such as RNA interference (RNAi), offer a powerful method for elucidating gene function and discovery of novel therapeutic targets in a high-throughput fashion. In addition, RNAi is rapidly being adopted for treatment of neurological disorders, such as Alzheimer's disease (AD), Parkinson's disease, etc. However, a major challenge in both of the aforementioned applications is the efficient delivery of siRNA molecules, plasmids or transcription factors to primary cells such as neurons. A majority of the current non-viral techniques, including chemical transfection, bulk electroporation and sonoporation fail to deliver with adequate efficiencies and the required spatial and temporal control. In this study, a novel optically transparent biochip is presented that can (a) transfect populations of primary and secondary cells in 2D culture (b) readily scale to realize high-throughput transfections using microscale electroporation and (c) transfect targeted cells in culture with spatial and temporal control. In this study, delivery of genetic payloads of different sizes and molecular characteristics, such as GFP plasmids and siRNA molecules, to precisely targeted locations in primary hippocampal and HeLa cell cultures is demonstrated. In addition to spatio-temporally controlled transfection, the biochip also allowed simultaneous assessment of a) electrical activity of neurons, b) specific proteins using fluorescent immunohistochemistry, and c) sub-cellular structures. Functional silencing of GAPDH in HeLa cells using siRNA demonstrated a 52% reduction in the GAPDH levels. In situ assessment of actin filaments post electroporation indicated a sustained disruption in actin filaments in electroporated cells for up to two hours. Assessment of neural spike activity pre- and post-electroporation indicated a varying response to electroporation. The microarray based nature of the biochip enables multiple independent experiments on the same culture, thereby decreasing culture-to-culture variability, increasing experimental throughput and allowing cell-cell interaction studies. Further development of this technology will provide a cost-effective platform for performing high-throughput genetic screens.
ContributorsPatel, Chetan (Author) / Muthuswamy, Jitendran (Thesis advisor) / Helms Tillery, Stephen (Committee member) / Jain, Tilak (Committee member) / Caplan, Michael (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2012
151485-Thumbnail Image.png
Description
Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various

Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various working fluids. Theoretical and experimental analyses of a turbine-generator assembly utilizing compressed air, saturated steam and water as the working fluids were performed and are presented in this work. A brief background and explanation of the technology is provided along with potential applications. A theoretical thermodynamic analysis is outlined, resulting in turbine and rotor efficiencies, power outputs and Reynolds numbers calculated for the turbine for various combinations of working fluids and inlet nozzles. The results indicate the turbine is capable of achieving a turbine efficiency of 31.17 ± 3.61% and an estimated rotor efficiency 95 ± 9.32%. These efficiencies are promising considering the numerous losses still present in the current design. Calculation of the Reynolds number provided some capability to determine the flow behavior and how that behavior impacts the performance and efficiency of the Tesla turbine. It was determined that turbulence in the flow is essential to achieving high power outputs and high efficiency. Although the efficiency, after peaking, begins to slightly taper off as the flow becomes increasingly turbulent, the power output maintains a steady linear increase.
ContributorsPeshlakai, Aaron (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2012
151515-Thumbnail Image.png
Description
This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified

This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified technique results in significant improvement in velocity retrieval accuracy. These modifications include changes to innovation covariance portioning, covariance binning, and analysis increment calculation. It is observed that the modified technique is able to make retrievals with better accuracy, preserves local information better, and compares well with tower measurements. In order to study the error of representativeness and vector retrieval error, a lidar simulator was constructed. Using the lidar simulator a thorough sensitivity analysis of the lidar measurement process and vector retrieval is carried out. The error of representativeness as a function of scales of motion and sensitivity of vector retrieval to look angle is quantified. Using the modified OI technique, study of nocturnal flow in Owens' Valley, CA was carried out to identify and understand uncharacteristic events on the night of March 27th 2006. Observations from 1030 UTC to 1230 UTC (0230 hr local time to 0430 hr local time) on March 27 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) and other in-situ instrumentations are used to corroborate and complement these observations. The modified OI technique is used to identify uncharacteristic and extreme flow events at a wind development site. Estimates of turbulence and shear from this technique are compared to tower measurements. A formulation for equivalent wind speed in the presence of variations in wind speed and direction, combined with shear is developed and used to determine wind energy content in presence of turbulence.
ContributorsChoukulkar, Aditya (Author) / Calhoun, Ronald (Thesis advisor) / Mahalov, Alex (Committee member) / Kostelich, Eric (Committee member) / Huang, Huei-Ping (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
152160-Thumbnail Image.png
Description
A cerebral aneurysm is an abnormal ballooning of the blood vessel wall in the brain that occurs in approximately 6% of the general population. When a cerebral aneurysm ruptures, the subsequent damage is lethal damage in nearly 50% of cases. Over the past decade, endovascular treatment has emerged as an

A cerebral aneurysm is an abnormal ballooning of the blood vessel wall in the brain that occurs in approximately 6% of the general population. When a cerebral aneurysm ruptures, the subsequent damage is lethal damage in nearly 50% of cases. Over the past decade, endovascular treatment has emerged as an effective treatment option for cerebral aneurysms that is far less invasive than conventional surgical options. Nonetheless, the rate of successful treatment is as low as 50% for certain types of aneurysms. Treatment success has been correlated with favorable post-treatment hemodynamics. However, current understanding of the effects of endovascular treatment parameters on post-treatment hemodynamics is limited. This limitation is due in part to current challenges in in vivo flow measurement techniques. Improved understanding of post-treatment hemodynamics can lead to more effective treatments. However, the effects of treatment on hemodynamics may be patient-specific and thus, accurate tools that can predict hemodynamics on a case by case basis are also required for improving outcomes.Accordingly, the main objectives of this work were 1) to develop computational tools for predicting post-treatment hemodynamics and 2) to build a foundation of understanding on the effects of controllable treatment parameters on cerebral aneurysm hemodynamics. Experimental flow measurement techniques, using particle image velocimetry, were first developed for acquiring flow data in cerebral aneurysm models treated with an endovascular device. The experimental data were then used to guide the development of novel computational tools, which consider the physical properties, design specifications, and deployment mechanics of endovascular devices to simulate post-treatment hemodynamics. The effects of different endovascular treatment parameters on cerebral aneurysm hemodynamics were then characterized under controlled conditions. Lastly, application of the computational tools for interventional planning was demonstrated through the evaluation of two patient cases.
ContributorsBabiker, M. Haithem (Author) / Frakes, David H (Thesis advisor) / Adrian, Ronald (Committee member) / Caplan, Michael (Committee member) / Chong, Brian (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2013
151852-Thumbnail Image.png
Description
Coronary heart disease (CHD) is the most prevalent cause of death worldwide. Atherosclerosis which is the condition of plaque buildup on the inside of the coronary artery wall is the main cause of CHD. Rupture of unstable atherosclerotic coronary plaque is known to be the cause of acute coronary syndrome.

Coronary heart disease (CHD) is the most prevalent cause of death worldwide. Atherosclerosis which is the condition of plaque buildup on the inside of the coronary artery wall is the main cause of CHD. Rupture of unstable atherosclerotic coronary plaque is known to be the cause of acute coronary syndrome. The composition of plaque is important for detection of plaque vulnerability. Due to prognostic importance of early stage identification, non-invasive assessment of plaque characterization is necessary. Computed tomography (CT) has emerged as a non-invasive alternative to coronary angiography. Recently, dual energy CT (DECT) coronary angiography has been performed clinically. DECT scanners use two different X-ray energies in order to determine the energy dependency of tissue attenuation values for each voxel. They generate virtual monochromatic energy images, as well as material basis pair images. The characterization of plaque components by DECT is still an active research topic since overlap between the CT attenuations measured in plaque components and contrast material shows that the single mean density might not be an appropriate measure for characterization. This dissertation proposes feature extraction, feature selection and learning strategies for supervised characterization of coronary atherosclerotic plaques. In my first study, I proposed an approach for calcium quantification in contrast-enhanced examinations of the coronary arteries, potentially eliminating the need for an extra non-contrast X-ray acquisition. The ambiguity of separation of calcium from contrast material was solved by using virtual non-contrast images. Additional attenuation data provided by DECT provides valuable information for separation of lipid from fibrous plaque since the change of their attenuation as the energy level changes is different. My second study proposed these as the input to supervised learners for a more precise classification of lipid and fibrous plaques. My last study aimed at automatic segmentation of coronary arteries characterizing plaque components and lumen on contrast enhanced monochromatic X-ray images. This required extraction of features from regions of interests. This study proposed feature extraction strategies and selection of important ones. The results show that supervised learning on the proposed features provides promising results for automatic characterization of coronary atherosclerotic plaques by DECT.
ContributorsYamak, Didem (Author) / Akay, Metin (Thesis advisor) / Muthuswamy, Jit (Committee member) / Akay, Yasemin (Committee member) / Pavlicek, William (Committee member) / Vernon, Brent (Committee member) / Arizona State University (Publisher)
Created2013
152958-Thumbnail Image.png
Description
Gold nanoparticles have emerged as promising nanomaterials for biosensing, imaging, photothermal treatment and therapeutic delivery for several diseases, including cancer. We have generated poly(amino ether)-functionalized gold nanorods (PAE-GNRs) using a layer-by-layer deposition approach. Sub-toxic concentrations of PAE-GNRs were employed to deliver plasmid DNA to prostate cancer cells in vitro. PAE-GNRs

Gold nanoparticles have emerged as promising nanomaterials for biosensing, imaging, photothermal treatment and therapeutic delivery for several diseases, including cancer. We have generated poly(amino ether)-functionalized gold nanorods (PAE-GNRs) using a layer-by-layer deposition approach. Sub-toxic concentrations of PAE-GNRs were employed to deliver plasmid DNA to prostate cancer cells in vitro. PAE-GNRs generated using 1,4C-1,4Bis, a cationic polymer from our laboratory demonstrated significantly higher transgene expression and exhibited lower cytotoxicities when compared to similar assemblies generated using 25 kDa poly(ethylene imine) (PEI25k-GNRs), a current standard for polymer-mediated gene delivery. Additionally, sub-toxic concentrations of 1,4C-1,4Bis-GNR nanoassemblies were employed to deliver expression vectors that express shRNA ('shRNA plasmid') against firefly luciferase gene in order to knock down expression of the protein constitutively expressed in prostate cancer cells. The roles of poly(amino ether) chemistry and zeta-potential in determining transgene expression efficacies of PAE-GNR assemblies were investigated. The theranostic potential of 1,4C-1,4Bis-GNR nanoassemblies was demonstrated using live cell two-photon induced luminescence bioimaging. The PAE class of polymers was also investigated for the one pot synthesis of both gold and silver nanoparticles using a small library poly(amino ethers) derived from linear-like polyamines. Efficient nanoparticle synthesis dependent on concentration of polymers as well as polymer chemical composition is demonstrated. Additionally, the application of poly(amino ether)-gold nanoparticles for transgene delivery is demonstrated in 22Rv1 and MB49 cancer cell lines. Base polymer, 1,4C-1,4Bis and 1,4C-1,4Bis templated and modified gold nanoparticles were compared for transgene delivery efficacies. Differences in morphology and physiochemical properties were investigated as they relate to differences in transgene delivery efficacy. There were found to be minimal differences suggestion that 1,4C-1,4Bis efficacy is not lost following use for nanoparticle modification. These results indicate that poly(amino ether)-gold nanoassemblies are a promising theranostic platform for delivery of therapeutic payloads capable of simultaneous gene silencing and bioimaging.
ContributorsRamos, James (Author) / Rege, Kaushal (Thesis advisor) / Kodibagkar, Vikram (Committee member) / Caplan, Michael (Committee member) / Vernon, Brent (Committee member) / Garcia, Antonio (Committee member) / Arizona State University (Publisher)
Created2014
152984-Thumbnail Image.png
Description
Multi-touch tablets and smart phones are now widely used in both workplace and consumer settings. Interacting with these devices requires hand and arm movements that are potentially complex and poorly understood. Experimental studies have revealed differences in performance that could potentially be associated with injury risk. However, underlying causes for

Multi-touch tablets and smart phones are now widely used in both workplace and consumer settings. Interacting with these devices requires hand and arm movements that are potentially complex and poorly understood. Experimental studies have revealed differences in performance that could potentially be associated with injury risk. However, underlying causes for performance differences are often difficult to identify. For example, many patterns of muscle activity can potentially result in similar behavioral output. Muscle activity is one factor contributing to forces in tissues that could contribute to injury. However, experimental measurements of muscle activity and force for humans are extremely challenging. Models of the musculoskeletal system can be used to make specific estimates of neuromuscular coordination and musculoskeletal forces. However, existing models cannot easily be used to describe complex, multi-finger gestures such as those used for multi-touch human computer interaction (HCI) tasks. We therefore seek to develop a dynamic musculoskeletal simulation capable of estimating internal musculoskeletal loading during multi-touch tasks involving multi digits of the hand, and use the simulation to better understand complex multi-touch and gestural movements, and potentially guide the design of technologies the reduce injury risk. To accomplish these, we focused on three specific tasks. First, we aimed at determining the optimal index finger muscle attachment points within the context of the established, validated OpenSim arm model using measured moment arm data taken from the literature. Second, we aimed at deriving moment arm values from experimentally-measured muscle attachments and using these values to determine muscle-tendon paths for both extrinsic and intrinsic muscles of middle, ring and little fingers. Finally, we aimed at exploring differences in hand muscle activation patterns during zooming and rotating tasks on the tablet computer in twelve subjects. Towards this end, our musculoskeletal hand model will help better address the neuromuscular coordination, safe gesture performance and internal loadings for multi-touch applications.
ContributorsYi, Chong-hwan (Author) / Jindrich, Devin L. (Thesis advisor) / Artemiadis, Panagiotis K. (Thesis advisor) / Phelan, Patrick (Committee member) / Santos, Veronica J. (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2014
153086-Thumbnail Image.png
Description
A municipal electric utility in Mesa, Arizona with a peak load of approximately 85 megawatts (MW) was analyzed to determine how the implementation of renewable resources (both wind and solar) would affect the overall cost of energy purchased by the utility. The utility currently purchases all of its energy

A municipal electric utility in Mesa, Arizona with a peak load of approximately 85 megawatts (MW) was analyzed to determine how the implementation of renewable resources (both wind and solar) would affect the overall cost of energy purchased by the utility. The utility currently purchases all of its energy through long term energy supply contracts and does not own any generation assets and so optimization was achieved by minimizing the overall cost of energy while adhering to specific constraints on how much energy the utility could purchase from the short term energy market. Scenarios were analyzed for a five percent and a ten percent penetration of renewable energy in the years 2015 and 2025. Demand Side Management measures (through thermal storage in the City's district cooling system, electric vehicles, and customers' air conditioning improvements) were evaluated to determine if they would mitigate some of the cost increases that resulted from the addition of renewable resources.

In the 2015 simulation, wind energy was less expensive than solar to integrate to the supply mix. When five percent of the utility's energy requirements in 2015 are met by wind, this caused a 3.59% increase in the overall cost of energy. When that five percent is met by solar in 2015, it is estimated to cause a 3.62% increase in the overall cost of energy. A mix of wind and solar in 2015 caused a lower increase in the overall cost of energy of 3.57%. At the ten percent implementation level in 2015, solar, wind, and a mix of solar and wind caused increases of 7.28%, 7.51% and 7.27% respectively in the overall cost of energy.

In 2025, at the five percent implementation level, wind and solar caused increases in the overall cost of energy of 3.07% and 2.22% respectively. In 2025, at the ten percent implementation level, wind and solar caused increases in the overall cost of energy of 6.23% and 4.67% respectively.

Demand Side Management reduced the overall cost of energy by approximately 0.6%, mitigating some of the cost increase from adding renewable resources.
ContributorsCadorin, Anthony (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Trimble, Steve (Committee member) / Arizona State University (Publisher)
Created2014
Description
An eco-industrial park (EIP) is an industrial ecosystem in which a group of co-located firms are involved in collective resource optimization with each other and with the local community through physical exchanges of energy, water, materials, byproducts and services - referenced in the industrial ecology literature as "industrial symbiosis". EIPs,

An eco-industrial park (EIP) is an industrial ecosystem in which a group of co-located firms are involved in collective resource optimization with each other and with the local community through physical exchanges of energy, water, materials, byproducts and services - referenced in the industrial ecology literature as "industrial symbiosis". EIPs, when compared with standard industrial resource sharing networks, prove to be of greater public advantage as they offer improved environmental and economic benefits, and higher operational efficiencies both upstream and downstream in their supply chain.

Although there have been many attempts to adapt EIP methodology to existing industrial sharing networks, most of them have failed for various factors: geographic restrictions by governmental organizations on use of technology, cost of technology, the inability of industries to effectively communicate their upstream and downstream resource usage, and to diminishing natural resources such as water, land and non-renewable energy (NRE) sources for energy production.

This paper presents a feasibility study conducted to evaluate the comparative environmental, economic, and geographic impacts arising from the use of renewable energy (RE) and NRE to power EIPs. Life Cycle Assessment (LCA) methodology, which is used in a variety of sectors to evaluate the environmental merits and demerits of different kinds of products and processes, was employed for comparison between these two energy production methods based on factors such as greenhouse gas emission, acidification potential, eutrophication potential, human toxicity potential, fresh water usage and land usage. To complement the environmental LCA analysis, levelized cost of electricity was used to evaluate the economic impact. This model was analyzed for two different geographic locations; United States and Europe, for 12 different energy production technologies.

The outcome of this study points out the environmental, economic and geographic superiority of one energy source over the other, including the total carbon dioxide equivalent emissions, which can then be related to the total number of carbon credits that can be earned or used to mitigate the overall carbon emission and move closer towards a net zero carbon footprint goal thus making the EIPs truly sustainable.
ContributorsGupta, Vaibhav (Author) / Calhoun, Ronald J (Thesis advisor) / Dooley, Kevin (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2014