Matching Items (23)
Filtering by

Clear all filters

152384-Thumbnail Image.png
Description
Thiol functionalization is one potentially useful way to tailor physical and chemical properties of graphene oxides (GOs) and reduced graphene oxides (RGOs). Despite the ubiquitous presence of thiol functional groups in diverse chemical systems, efficient thiol functionalization has been challenging for GOs and RGOs, or for carbonaceous materials in general.

Thiol functionalization is one potentially useful way to tailor physical and chemical properties of graphene oxides (GOs) and reduced graphene oxides (RGOs). Despite the ubiquitous presence of thiol functional groups in diverse chemical systems, efficient thiol functionalization has been challenging for GOs and RGOs, or for carbonaceous materials in general. In this work, thionation of GOs has been achieved in high yield through two new methods that also allow concomitant chemical reduction/thermal reduction of GOs; a solid-gas metathetical reaction method with boron sulfides (BxSy) gases and a solvothermal reaction method employing phosphorus decasulfide (P4S10). The thionation products, called "mercapto reduced graphene oxides (m-RGOs)", were characterized by employing X-ray photoelectron spectroscopy, powder X-ray diffraction, UV-Vis spectroscopy, FT-IR spectroscopy, Raman spectroscopy, electron probe analysis, scanning electron microscopy, (scanning) transmission electron microscopy, nano secondary ion mass spectrometry, Ellman assay and atomic force microscopy. The excellent dispersibility of m-RGOs in various solvents including alcohols has allowed fabrication of thin films of m-RGOs. Deposition of m-RGOs on gold substrates was achieved through solution deposition and the m-RGOs were homogeneously distributed on gold surface shown by atomic force microscopy. Langmuir-Blodgett (LB) films of m-RGOs were obtained by transferring their Langmuir films, formed by simple drop casting of m-RGOs dispersion on water surface, onto various substrates including gold, glass and indium tin oxide. The m-RGO LB films showed low sheet resistances down to about 500 kΩ/sq at 92% optical transparency. The successful results make m-RGOs promising for applications in transparent conductive coatings, biosensing, etc.
ContributorsJeon, Kiwan (Author) / Seo, Dong-Kyun (Thesis advisor) / Jones, Anne K (Committee member) / Yarger, Jeffery (Committee member) / Arizona State University (Publisher)
Created2013
153341-Thumbnail Image.png
Description
Geopolymers, a class of X-ray amorphous, ceramic-like aluminosilicate materials are produced at ambient temperatures through a process called geopolymerization. Due to both low energy requirement during synthesis and interesting mechanical and chemical properties, geopolymers are grabbing enormous attention. Although geopolymers have a broad range of applications including thermal/acoustic

Geopolymers, a class of X-ray amorphous, ceramic-like aluminosilicate materials are produced at ambient temperatures through a process called geopolymerization. Due to both low energy requirement during synthesis and interesting mechanical and chemical properties, geopolymers are grabbing enormous attention. Although geopolymers have a broad range of applications including thermal/acoustic insulation and waste immobilization, they are always prepared in monolithic form. The primary aim of this study is to produce new nanostructured materials from the geopolymerization process, including porous monoliths and powders.

In view of the current interest in porous geopolymers for non-traditional applications, it is becoming increasingly important to develop synthetic techniques to introduce interconnected pores into the geopolymers. This study presents a simple synthetic route to produce hierarchically porous geopolymers via a reactive emulsion templating process utilizing triglyceride oil. In this new method, highly alkaline geopolymer resin is mixed with canola oil to form a homogeneous viscous emulsion which, when cured at 60 °C, gives a hard monolithic material. During the process, the oil in the alkaline emulsion undergoes a saponification reaction to decompose into water-soluble soap and glycerol molecules which are extracted to yield porous geopolymers. Nitrogen sorption studies indicates the presence of mesopores, whereas the SEM studies reveals that the mesoporous geopolymer matrix is dotted with spherical macropores. The method exhibits flexibility in that the pore structure of the final porous geopolymers products can be adjusted by varying the precursor composition.

In a second method, the geopolymerization process is modified to produce highly dispersible geopolymer particles, by activating metakaolin with sodium silicate solutions containing excess alkali, and curing for short duration under moist conditions. The produced geopolymer particles exhibit morphology similar to carbon blacks and structured silicas, while also being stable over a wide pH range.

Finally, highly crystalline hierarchical faujasite zeolites are prepared by yet another modification of the geopolymerization process. In this technique, the second method is combined with a saponification reaction of triglyceride oil. The resulting hierarchical zeolites exhibit superior CO2-sorption properties compared to equivalent commercially available and currently reported materials. Additionally, the simplicity of all three of these techniques means they are readily scalable.
ContributorsMedpelli, Dinesh (Author) / Seo, Dong-Kyun (Thesis advisor) / Herckes, Pierre (Committee member) / Petuskey, William (Committee member) / Arizona State University (Publisher)
Created2015
153179-Thumbnail Image.png
Description
This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries and 2) gel membrane for proton conduction in fuel cells; where overall aims were encouraged by the U.S. Department of

This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries and 2) gel membrane for proton conduction in fuel cells; where overall aims were encouraged by the U.S. Department of Energy.

Large-scale, sodium-ion batteries are seen as global solutions to providing undisrupted electricity from sustainable, but power-fluctuating, energy production in the near future. Foreseen ideal advantages are lower cost without sacrifice of desired high-energy densities relative to present lithium-ion and lead-acid battery systems. Na/NiCl2 (ZEBRA) and Na/S battery chemistries, suffer from high operation temperature (>300ºC) and safety concerns following major fires consequent of fuel mixing after cell-separator rupturing. Initial interest was utilizing low-melting organic ionic liquid, [EMI+][AlCl4-], with well-known molten salt, NaAlCl4, to create a low-to-moderate operating temperature version of ZEBRA batteries; which have been subject of prior sodium battery research spanning decades. Isothermal conductivities of these electrolytes revealed a fundamental kinetic problem arisen from "alkali cation-trapping effect" yet relived by heat-ramping >140ºC.

Battery testing based on [EMI+][FeCl4-] with NaAlCl4 functioned exceptional (range 150-180ºC) at an impressive energy efficiency >96%. Newly prepared inorganic ionic liquid, [PBr4+][Al2Br7-]:NaAl2Br7, melted at 94ºC. NaAl2Br7 exhibited super-ionic conductivity 10-1.75 Scm-1 at 62ºC ensued by solid-state rotator phase transition. Also improved thermal stability when tested to 265ºC and less expensive chemical synthesis. [PBr4+][Al2Br7-] demonstrated remarkable, ionic decoupling in the liquid-state due to incomplete bromide-ion transfer depicted in NMR measurements.

Fuel cells are electrochemical devices generating electrical energy reacting hydrogen/oxygen gases producing water vapor. Principle advantage is high-energy efficiency of up to 70% in contrast to an internal combustion engine <40%. Nafion-based fuel cells are prone to carbon monoxide catalytic poisoning and polymer membrane degradation unless heavily hydrated under cell-pressurization. This novel "SiPOH" solid-electrolytic gel (originally liquid-state) operated in the fuel cell at 121oC yielding current and power densities high as 731mAcm-2 and 345mWcm-2, respectively. Enhanced proton conduction significantly increased H2 fuel efficiency to 89.7% utilizing only 3.1mlmin-1 under dry, unpressurized testing conditions. All these energy devices aforementioned evidently have future promise; therefore in early developmental stages.
ContributorsTucker, Telpriore G (Author) / Angell, Charles A. (Committee member) / Moore, Ana (Committee member) / Seo, Dong-Kyun (Committee member) / Arizona State University (Publisher)
Created2014
153344-Thumbnail Image.png
Description
Increasing concentrations of carbon dioxide in the atmosphere will inevitably lead to long-term changes in climate that can have serious consequences. Controlling anthropogenic emission of carbon dioxide into the atmosphere, however, represents a significant technological challenge. Various chemical approaches have been suggested, perhaps the most promising of these is based

Increasing concentrations of carbon dioxide in the atmosphere will inevitably lead to long-term changes in climate that can have serious consequences. Controlling anthropogenic emission of carbon dioxide into the atmosphere, however, represents a significant technological challenge. Various chemical approaches have been suggested, perhaps the most promising of these is based on electrochemical trapping of carbon dioxide using pyridine and derivatives. Optimization of this process requires a detailed understanding of the mechanisms of the reactions of reduced pyridines with carbon dioxide, which are not currently well known. This thesis describes a detailed mechanistic study of the nucleophilic and Bronsted basic properties of the radical anion of bipyridine as a model pyridine derivative, formed by one-electron reduction, with particular emphasis on the reactions with carbon dioxide. A time-resolved spectroscopic method was used to characterize the key intermediates and determine the kinetics of the reactions of the radical anion and its protonated radical form. Using a pulsed nanosecond laser, the bipyridine radical anion could be generated in-situ in less than 100 ns, which allows fast reactions to be monitored in real time. The bipyridine radical anion was found to be a very powerful one-electron donor, Bronsted base and nucleophile. It reacts by addition to the C=O bonds of ketones with a bimolecular rate constant around 1* 107 M-1 s-1. These are among the fastest nucleophilic additions that have been reported in literature. Temperature dependence studies demonstrate very low activation energies and large Arrhenius pre-exponential parameters, consistent with very high reactivity. The kinetics of E2 elimination, where the radical anion acts as a base, and SN2 substitution, where the radical anion acts as a nucleophile, are also characterized by large bimolecular rate constants in the range ca. 106 - 107 M-1 s-1. The pKa of the bipyridine radical anion was measured using a kinetic method and analysis of the data using a Marcus theory model for proton transfer. The bipyridine radical anion is found to have a pKa of 40±5 in DMSO. The reorganization energy for the proton transfer reaction was found to be 70±5 kJ/mol. The bipyridine radical anion was found to react very rapidly with carbon dioxide, with a bimolecular rate constant of 1* 108 M-1 s-1 and a small activation energy, whereas the protonated radical reacted with carbon dioxide with a rate constant that was too small to measure. The kinetic and thermodynamic data obtained in this work can be used to understand the mechanisms of the reactions of pyridines with carbon dioxide under reducing conditions.
ContributorsRanjan, Rajeev (Author) / Gould, Ian R (Thesis advisor) / Buttry, Daniel A (Thesis advisor) / Yarger, Jeff (Committee member) / Seo, Dong-Kyun (Committee member) / Arizona State University (Publisher)
Created2015
150327-Thumbnail Image.png
Description
This dissertation presents a systematic study of the sorption mechanisms of hydrophobic silica aerogel (Cabot Nanogel®) granules for oil and volatile organic compounds (VOCs) in different phases. The performance of Nanogel for removing oil from laboratory synthetic oil-in-water emulsions and real oily wastewater, and VOCs from their aqueous solution, in

This dissertation presents a systematic study of the sorption mechanisms of hydrophobic silica aerogel (Cabot Nanogel®) granules for oil and volatile organic compounds (VOCs) in different phases. The performance of Nanogel for removing oil from laboratory synthetic oil-in-water emulsions and real oily wastewater, and VOCs from their aqueous solution, in both packed bed (PB) and inverse fluidized bed (IFB) modes was also investigated. The sorption mechanisms of VOCs in the vapor, pure liquid, and aqueous solution phases, free oil, emulsified oil, and oil from real wastewater on Nanogel were systematically studied via batch kinetics and equilibrium experiments. The VOC results show that the adsorption of vapor is very slow due to the extremely low thermal conductivity of Nanogel. The faster adsorption rates in the liquid and solution phases are controlled by the mass transport, either by capillary flow or by vapor diffusion/adsorption. The oil results show that Nanogel has a very high capacity for adsorption of pure oils. However, the rate for adsorption of oil from an oil-water emulsion on the Nanogel is 5-10 times slower than that for adsorption of pure oils or organics from their aqueous solutions. For an oil-water emulsion, the oil adsorption capacity decreases with an increasing proportion of the surfactant added. An even lower sorption capacity and a slower sorption rate were observed for a real oily wastewater sample due to the high stability and very small droplet size of the wastewater. The performance of Nanogel granules for removing emulsified oil, oil from real oily wastewater, and toluene at low concentrations in both PB and IFB modes was systematically investigated. The hydrodynamics characteristics of the Nanogel granules in an IFB were studied by measuring the pressure drop and bed expansion with superficial water velocity. The density of the Nanogel granules was calculated from the plateau pressure drop of the IFB. The oil/toluene removal efficiency and the capacity of the Nanogel granules in the PB or IFB were also measured experimentally and predicted by two models based on equilibrium and kinetic batch measurements of the Nanogel granules.
ContributorsWang, Ding (Author) / Lin, Jerry Y.S. (Thesis advisor) / Pfeffer, Robert (Thesis advisor) / Westerhoff, Paul (Committee member) / Nielsen, David (Committee member) / Lind, Mary Laura (Committee member) / Arizona State University (Publisher)
Created2011
149862-Thumbnail Image.png
Description
Biological membranes are critical to cell sustainability by selectively permeating polar molecules into the intracellular space and providing protection to the interior organelles. Biomimetic membranes (model cell membranes) are often used to fundamentally study the lipid bilayer backbone structure of the biological membrane. Lipid bilayer membranes are often supported using

Biological membranes are critical to cell sustainability by selectively permeating polar molecules into the intracellular space and providing protection to the interior organelles. Biomimetic membranes (model cell membranes) are often used to fundamentally study the lipid bilayer backbone structure of the biological membrane. Lipid bilayer membranes are often supported using inorganic materials in an effort to improve membrane stability and for application to novel biosensing platforms. Published literature has shown that a variety of dense inorganic materials with various surface properties have been investigated for the study of biomimetic membranes. However, literature does not adequately address the effect of porous materials or supports with varying macroscopic geometries on lipid bilayer membrane behavior. The objective of this dissertation is to present a fundamental study on the synthesis of lipid bilayer membranes supported by novel inorganic supports in an effort to expand the number of available supports for biosensing technology. There are two fundamental areas covered including: (1) synthesis of lipid bilayer membranes on porous inorganic materials and (2) synthesis and characterization of cylindrically supported lipid bilayer membranes. The lipid bilayer membrane formation behavior on various porous supports was studied via direct mass adsorption using a quartz crystal microbalance. Experimental results demonstrate significantly different membrane formation behaviors on the porous inorganic supports. A lipid bilayer membrane structure was formed only on SiO2 based surfaces (dense SiO2 and silicalite, basic conditions) and gamma-alumina (acidic conditions). Vesicle monolayer adsorption was observed on gamma-alumina (basic conditions), and yttria stabilized zirconia (YSZ) of varying roughness. Parameters such as buffer pH, surface chemistry and surface roughness were found to have a significant impact on the vesicle adsorption kinetics. Experimental and modeling work was conducted to study formation and characterization of cylindrically supported lipid bilayer membranes. A novel sensing technique (long-period fiber grating refractometry) was utilized to measure the formation mechanism of lipid bilayer membranes on an optical fiber. It was found that the membrane formation kinetics on the fiber was similar to its planar SiO2 counterpart. Fluorescence measurements verified membrane transport behavior and found that characterization artifacts affected the measured transport behavior.
ContributorsEggen, Carrie (Author) / Lin, Jerry Y.S. (Thesis advisor) / Dai, Lenore (Committee member) / Rege, Kaushal (Committee member) / Thornton, Trevor (Committee member) / Vogt, Bryan (Committee member) / Arizona State University (Publisher)
Created2011
150569-Thumbnail Image.png
Description
Deoxyribonucleic acid (DNA) has been treated as excellent building material for nanoscale construction because of its unique structural features. Its ability to self-assemble into predictable and addressable nanostructures distinguishes it from other materials. A large variety of DNA nanostructures have been constructed, providing scaffolds with nanometer precision to organize functional

Deoxyribonucleic acid (DNA) has been treated as excellent building material for nanoscale construction because of its unique structural features. Its ability to self-assemble into predictable and addressable nanostructures distinguishes it from other materials. A large variety of DNA nanostructures have been constructed, providing scaffolds with nanometer precision to organize functional molecules. This dissertation focuses on developing biologically replicating DNA nanostructures to explore their biocompatibility for potential functions in cells, as well as studying the molecular behaviors of DNA origami tiles in higher-order self-assembly for constructing DNA nanostructures with large size and complexity. Presented here are a series of studies towards this goal. First, a single-stranded DNA tetrahedron was constructed and replicated in vivo with high efficiency and fidelity. This study indicated the compatibility between DNA nanostructures and biological systems, and suggested a feasible low-coast method to scale up the preparation of synthetic DNA. Next, the higher-order self-assembly of DNA origami tiles was systematically studied. It was demonstrated that the dimensional aspect ratio of origami tiles as well as the intertile connection design were essential in determining the assembled superstructures. Finally, the effects of DNA hairpin loops on the conformations of origami tiles as well as the higher-order assembled structures were demonstrated. The results would benefit the design and construction of large complex nanostructures.
ContributorsLi, Zhe (Author) / Yan, Hao (Thesis advisor) / Liu, Yan (Thesis advisor) / Seo, Dong-Kyun (Committee member) / Wachter, Rebekka (Committee member) / Arizona State University (Publisher)
Created2012
151091-Thumbnail Image.png
Description
Nanoporous electrically conducting materials can be prepared with high specific pore volumes and surface areas which make them well-suited for a wide variety of technologies including separation, catalysis and owing to their conductivity, energy related applications like solar cells, batteries and capacitors. General synthetic methods for nanoporous conducting materials that

Nanoporous electrically conducting materials can be prepared with high specific pore volumes and surface areas which make them well-suited for a wide variety of technologies including separation, catalysis and owing to their conductivity, energy related applications like solar cells, batteries and capacitors. General synthetic methods for nanoporous conducting materials that exhibit fine property control as well as facility and efficiency in their implementation continue to be highly sought after. Here, general methods for the synthesis of nanoporous conducting materials and their characterization are presented. Antimony-doped tin oxide (ATO), a transparent conducting oxide (TCO), and nanoporous conducting carbon can be prepared through the step-wise synthesis of interpenetrating inorganic/organic networks using well-established sol-gel methodology. The one-pot method produces an inorganic gel first that encompasses a solution of organic precursors. The surface of the inorganic gel subsequently catalyzes the formation of an organic gel network that interpenetrates throughout the inorganic gel network. These mutually supporting gel networks strengthen one another and allow for the use of evaporative drying methods and heat treatments that would usually destroy the porosity of an unsupported gel network. The composite gel is then selectively treated to either remove the organic network to provide a porous inorganic network, as is the case for antimony-doped tin oxide, or the inorganic network can be removed to generate a porous carbon material. The method exhibits flexibility in that the pore structure of the final porous material can be modified through the variation of the synthetic conditions. Additionally, porous carbons of hierarchical pore size distributions can be prepared by using wet alumina gel as a template dispersion medium and as a template itself. Alumina gels exhibit thixotropy, which is the ability of a solid to be sheared to a liquid state and upon removal of the shear force, return to a solid gel state. Alumina gels were prepared and blended with monomer solutions and sacrificial template particles to produce wet gel composites. These composites could then be treated to remove the alumina and template particles to generate hierarchically porous carbon.
ContributorsVolosin, Alex (Author) / Seo, Dong-Kyun (Thesis advisor) / Buttry, Daniel (Committee member) / Gust, John D (Committee member) / Arizona State University (Publisher)
Created2012
155914-Thumbnail Image.png
Description
Membrane technology is a viable option to debottleneck distillation processes and minimize the energy burden associated with light hydrocarbon mixture separations. Zeolitic imidazolate frameworks (ZIFs) are a new class of microporous metal-organic frameworks with highly tailorable zeolitic pores and unprecedented separation characteristics. ZIF-8 membranes demonstrate superior separation performance for propylene/propane

Membrane technology is a viable option to debottleneck distillation processes and minimize the energy burden associated with light hydrocarbon mixture separations. Zeolitic imidazolate frameworks (ZIFs) are a new class of microporous metal-organic frameworks with highly tailorable zeolitic pores and unprecedented separation characteristics. ZIF-8 membranes demonstrate superior separation performance for propylene/propane (C3) and hydrogen/hydrocarbon mixtures at room temperature. However, to date, little is known about the static thermal stability and ethylene/ethane (C2) separation characteristics of ZIF-8. This dissertation presents a set of fundamental studies to investigate the thermal stability, transport and modification of ZIF-8 membranes for light hydrocarbon separations.

Static TGA decomposition kinetics studies show that ZIF-8 nanocrystals maintain their crystallinity up to 200○C in inert, oxidizing and reducing atmospheres. At temperatures of 250○C and higher, the findings herein support the postulation that ZIF-8 nanocrystals undergo temperature induced decomposition via thermolytic bond cleaving reactions to form an imidazole-Zn-azirine structure. The crystallinity/bond integrity of ZIF-8 membrane thin films is maintained at temperatures below 150○C.

Ethane and ethylene transport was studied in single and binary gas mixtures. Thermodynamic parameters derived from membrane permeation and crystal adsorption experiments show that the C2 transport mechanism is controlled by adsorption rather than diffusion. Low activation energy of diffusion values for both C2 molecules and limited energetic/entropic diffusive selectivity are observed for C2 molecules despite being larger than the nominal ZIF-8 pore aperture and is due to pore flexibility.

Finally, ZIF-8 membranes were modified with 5,6 dimethylbenzimidazole through solvent assisted membrane surface ligand exchange to narrow the pore aperture for enhanced molecular sieving. Results show that relatively fast exchange kinetics occur at the mainly at the outer ZIF-8 membrane surface between 0-30 minutes of exchange. Short-time exchange enables C3 selectivity increases with minimal olefin permeance losses. As the reaction proceeds, the ligand exchange rate slows as the 5,6 DMBIm linker proceeds into the ZIF-8 inner surface, exchanges with the original linker and first disrupts the original framework’s crystallinity, then increases order as the reaction proceeds. The ligand exchange rate increases with temperature and the H2/C2 separation factor increases with increases in ligand exchange time and temperature.
ContributorsJames, Joshua B. (Author) / Lin, Jerry Y.S. (Thesis advisor) / Emady, Heather (Committee member) / Lind, Mary Laura (Committee member) / Mu, Bin (Committee member) / Seo, Dong (Committee member) / Arizona State University (Publisher)
Created2017
156142-Thumbnail Image.png
Description
Graphene oxide membranes have shown promising gas separation characteristics specially for hydrogen that make them of interest for industrial applications. However, the gas transport mechanism for these membranes is unclear due to inconsistent permeation and separation results reported in literature. Graphene oxide membranes made by filtration, the most common synthesis

Graphene oxide membranes have shown promising gas separation characteristics specially for hydrogen that make them of interest for industrial applications. However, the gas transport mechanism for these membranes is unclear due to inconsistent permeation and separation results reported in literature. Graphene oxide membranes made by filtration, the most common synthesis method, contain wrinkles affecting their gas separation characteristics and the method itself is difficult to scale up. Moreover, the production of graphene oxide membranes with fine-tuned interlayer spacing for improved molecular separation is still a challenge. These unsolved issues will affect their potential impact on industrial gas separation applications.

In this study, high quality graphene oxide membranes are synthesized on polyester track etch substrates by different deposition methods and characterized by XRD, SEM, AFM as well as single gas permeation and binary (H2/CO2) separation experiments. Membranes are made from large graphene oxide sheets of different sizes (33 and 17 micron) using vacuum filtration to shed more light on their transport mechanism. Membranes are made from dilute graphene oxide suspension by easily scalable spray coating technique to minimize extrinsic wrinkle formation. Finally, Brodie’s derived graphene oxide sheets were used to prepare membranes with narrow interlayer spacing to improve their (H2/CO2) separation performance.

An inter-sheet and inner-sheet two-pathway model is proposed to explain the permeation and separation results of graphene oxide membranes obtained in this study. At room temperature, large gas molecules (CH4, N2, and CO2) permeate through inter-sheet pathway of the membranes, exhibiting Knudsen like diffusion characteristics, with the permeance for the small sheet membrane about twice that for the large sheet membrane. The small gases (H2 and He) exhibit much higher permeance, showing significant flow through an inner-sheet pathway, in addition to the flow through the inter-sheet pathway. Membranes prepared by spray coating offer gas characteristics similar to those made by filtration, however using dilute graphene oxide suspension in spray coating will help reduce the formation of extrinsic wrinkles which result in reduction in the porosity of the inter-sheet pathway where the transport of large gas molecules dominates. Brodie’s derived graphene oxide membranes showed overall low permeability and significant improvement in in H2/CO2 selectivity compared to membranes made using Hummers’ derived sheets due to smaller interlayer space height of Brodie’s sheets (~3 Å).
ContributorsIbrahim, Amr Fatehy Muhammad (Author) / Lin, Jerry Y.S. (Thesis advisor) / Mu, Bin (Committee member) / Lind, Mary (Committee member) / Green, Matthew (Committee member) / Wang, Qing (Committee member) / Arizona State University (Publisher)
Created2018