Matching Items (104)
Filtering by

Clear all filters

161700-Thumbnail Image.png
Description
Thin films are widely used for a variety of applications such as electrical interconnects, sensors, as well as optical, mechanical, and decorative coatings. Thin films made of NiTi, commonly referred to as nitinol, have generated recent interest as they are highly suitable for high frequency thermal actuation in microelectromechanical devices

Thin films are widely used for a variety of applications such as electrical interconnects, sensors, as well as optical, mechanical, and decorative coatings. Thin films made of NiTi, commonly referred to as nitinol, have generated recent interest as they are highly suitable for high frequency thermal actuation in microelectromechanical devices because of their small thermal mass and large surface-to-volume ratio. The functional properties of NiTi arise from a diffusionless phase transformation between two of its primary phases: austenite and martensite. This transformation leads to either the shape memory or pseudoelastic effect, where inelastic deformation is recovered with and without the application of heat, respectively. It is well known that the mechanical properties of NiTi are highly dependent on the microstructure, but few studies have been performed to examine the mechanical behavior of thin NiTi films (thickness below 200 nm), which are expected to have grain sizes in a similar range. The primary intent of this work is the synthesis of NiTi thin films with controlled microstructures, followed by characterization of their microstructure and its relationship to the mechanical properties. Microstructural control was achieved by utilizing a novel synthesis technique in which amorphous precursor films are seeded with nanocrystals, which serve as nucleation sites during subsequent crystallization via thermal annealing. This technique enables control of grain size, dispersion, and phase composition of thin films by varying the parameters of seed deposition as well as annealing conditions. The microstructures and composition of the NiTi thin films were characterized using X-ray Diffraction, Electron Microprobe Analysis, High-resolution Transmission Electron Microscopy, Secondary Ion Mass Spectroscopy, Differential Scanning Calorimetry, as well as other complementary techniques. Mechanical properties of the films were investigated using uniaxial tensile testing performed using a custom microfabricated tensile testing stage. The NiTi thin films exhibit mechanical behavior that is distinct from bulk NiTi, which is also highly sensitive to small changes in microstructure and phase composition. These findings are rationalized in terms of the changes in deformation mechanisms that occur at small grain sizes and sample dimensions.
ContributorsRASMUSSEN, Paul (Author) / Rajagopalan, Jagannathan (Thesis advisor) / Solanki, Kiran (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2021
161637-Thumbnail Image.png
Description
Extensive efforts have been devoted to understanding material failure in the last several decades. A suitable numerical method and specific failure criteria are required for failure simulation. The finite element method (FEM) is the most widely used approach for material mechanical modelling. Since FEM is based on partial differential equations,

Extensive efforts have been devoted to understanding material failure in the last several decades. A suitable numerical method and specific failure criteria are required for failure simulation. The finite element method (FEM) is the most widely used approach for material mechanical modelling. Since FEM is based on partial differential equations, it is hard to solve problems involving spatial discontinuities, such as fracture and material interface. Due to their intrinsic characteristics of integro-differential governing equations, discontinuous approaches are more suitable for problems involving spatial discontinuities, such as lattice spring method, discrete element method, and peridynamics. A recently proposed lattice particle method is shown to have no restriction of Poisson’s ratio, which is very common in discontinuous methods. In this study, the lattice particle method is adopted to study failure problems. In addition of numerical method, failure criterion is essential for failure simulations. In this study, multiaxial fatigue failure is investigated and then applied to the adopted method. Another critical issue of failure simulation is that the simulation process is time-consuming. To reduce computational cost, the lattice particle method can be partly replaced by neural network model.First, the development of a nonlocal maximum distortion energy criterion in the framework of a Lattice Particle Model (LPM) is presented for modeling of elastoplastic materials. The basic idea is to decompose the energy of a discrete material point into dilatational and distortional components, and plastic yielding of bonds associated with this material point is assumed to occur only when the distortional component reaches a critical value. Then, two multiaxial fatigue models are proposed for random loading and biaxial tension-tension loading, respectively. Following this, fatigue cracking in homogeneous and composite materials is studied using the lattice particle method and the proposed multiaxial fatigue model. Bi-phase material fatigue crack simulation is performed. Next, an integration of an efficient deep learning model and the lattice particle method is presented to predict fracture pattern for arbitrary microstructure and loading conditions. With this integration, computational accuracy and efficiency are both considered. Finally, some conclusion and discussion based on this study are drawn.
ContributorsWei, Haoyang (Author) / Liu, Yongming (Thesis advisor) / Chattopadhyay, Aditi (Committee member) / Jiang, Hanqing (Committee member) / Jiao, Yang (Committee member) / Oswald, Jay (Committee member) / Arizona State University (Publisher)
Created2021
161244-Thumbnail Image.png
Description
Special thermal interface materials are required for connecting devices that operate at high temperatures up to 300°C. Because devices used in power electronics, such as GaN, SiC, and other wide bandgap semiconductors, can reach very high temperatures (beyond 250°C), a high melting point, and high thermal & electrical conductivity are

Special thermal interface materials are required for connecting devices that operate at high temperatures up to 300°C. Because devices used in power electronics, such as GaN, SiC, and other wide bandgap semiconductors, can reach very high temperatures (beyond 250°C), a high melting point, and high thermal & electrical conductivity are required for the thermal interface material. Traditional solder materials for packaging cannot be used for these applications as they do not meet these requirements. Sintered nano-silver is a good candidate on account of its high thermal and electrical conductivity and very high melting point. The high temperature operating conditions of these devices lead to very high thermomechanical stresses that can adversely affect performance and also lead to failure. A number of these devices are mission critical and, therefore, there is a need for very high reliability. Thus, computational and nondestructive techniques and design methodology are needed to determine, characterize, and design the packages. Actual thermal cycling tests can be very expensive and time consuming. It is difficult to build test vehicles in the lab that are very close to the production level quality and therefore making comparisons or making predictions becomes a very difficult exercise. Virtual testing using a Finite Element Analysis (FEA) technique can serve as a good alternative. In this project, finite element analysis is carried out to help achieve this objective. A baseline linear FEA is performed to determine the nature and magnitude of stresses and strains that occur during the sintering step. A nonlinear coupled thermal and mechanical analysis is conducted for the sintering step to study the behavior more accurately and in greater detail. Damage and fatigue analysis are carried out for multiple thermal cycling conditions. The results are compared with the actual results from a prior study. A process flow chart outlining the FEA modeling process is developed as a template for the future work. A Coffin-Manson type relationship is developed to help determine the accelerated aging conditions and predict life for different service conditions.
ContributorsAmla, Tarun (Author) / Chawla, Nikhilesh (Thesis advisor) / Jiao, Yang (Committee member) / Liu, Yongming (Committee member) / Zhuang, Houlong (Committee member) / Jiang, Hanqing (Committee member) / Arizona State University (Publisher)
Created2020
190956-Thumbnail Image.png
Description
This thesis presents a study of Boron Nitride (BN) and Copper (Cu)/BN multilayer thin films in terms of synthesis, chemical, structural, morphological, and mechanical properties characterization. In this study, the influence of Ar/N₂ flow rate in synthesizing stoichiometric BN thin films via magnetron sputtering was investigated initially. Post magnetron

This thesis presents a study of Boron Nitride (BN) and Copper (Cu)/BN multilayer thin films in terms of synthesis, chemical, structural, morphological, and mechanical properties characterization. In this study, the influence of Ar/N₂ flow rate in synthesizing stoichiometric BN thin films via magnetron sputtering was investigated initially. Post magnetron sputtering, the crystalline nature and B:N stoichiometric ratio of deposited thin films were investigated by X-ray diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS) respectively. Thicknesses revealed by ellipsometry analysis for nearly stoichiometric B:N thin films and their corresponding deposition times were used for estimating BN interlayer deposition times during the deposition of Cu/BN multilayer thin films. To characterize the microstructure of the synthesized Cu/BN multilayer thin films, XRD and scanning electron microscopy (SEM) have been used. Finally, a comparison of nanoindentation measurements on pure Cu and Cu/BN multilayer thin films having different number of BN interlayers were used for studying the influence of BN interlayers on improving mechanical properties such as hardness and elastic modulus. The results show that the stoichiometry of BN thin films is dependent on the Ar/N₂ flow rate during magnetron sputtering. An optimal Ar/N₂ flow rate of 13:5 during deposition was required to achieve an approximately 1:1 B:N stoichiometry. Grazing incidence and powder XRD analysis on these stoichiometric BN thin films deposited at room temperature did not reveal a phase match when compared to hexagonal boron nitride (h-BN) and cubic boron nitride (c-BN) reference XRD patterns. For a BN thin film deposition time of 5 hours, a thickness of approximately 40 nm was achieved, as revealed by ellipsometry. XRD and microstructure analysis using scanning electron microscopy (SEM) on pure Cu and Cu/BN thin films showed that the Cu grain size in Cu/BN thin films is much finer than pure Cu thin films. Interestingly, nanoindentation measurements on pure Cu and Cu/BN thin films having a similar overall thickness demonstrated that hardness and Young’s modulus of the films were improved significantly when BN interlayers are present.
ContributorsCaner, Sumeyye (Author) / Rajagopalan, Jagannathan (Thesis advisor) / Oswald, Jay (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2023