Matching Items (178)
Filtering by

Clear all filters

151377-Thumbnail Image.png
Description
Arnold Schoenberg's 1908-09 song cycle, Das Buch der hängenden Gärten [The Book of the Hanging Gardens], opus 15, represents one of his most decisive early steps into the realm of musical modernism. In the midst of personal and artistic crises, Schoenberg set texts by Stefan George in a style he

Arnold Schoenberg's 1908-09 song cycle, Das Buch der hängenden Gärten [The Book of the Hanging Gardens], opus 15, represents one of his most decisive early steps into the realm of musical modernism. In the midst of personal and artistic crises, Schoenberg set texts by Stefan George in a style he called "pantonality," and described his composition as radically new. Though stylistically progressive, however, Schoenberg's musical achievement had certain ideologically conservative roots: the composer numbered among turn-of-the-century Viennese artists and thinkers whose opposition to the conventional and the popular--in favor of artistic autonomy and creativity--concealed a reactionary misogyny. A critical reading of Hanging Gardens through the lens of gender reveals that Schoenberg, like many of his contemporaries, incorporated strong frauenfeindlich [anti-women] elements into his work, through his modernist account of artistic creativity, his choice of texts, and his musical settings. Although elements of Hanging Gardens' atonal music suggest that Schoenberg valued gendered-feminine principles in his compositional style, a closer analysis of the work's musical language shows an intact masculinist hegemony. Through his deployment of uncanny tonal reminiscences, underlying tonal gestures, and closed forms in Hanging Gardens, Schoenberg ensures that the feminine-associated "excesses" of atonality remain under masculine control. This study draws upon the critical musicology of Susan McClary while arguing that Schoenberg's music is socially contingent, affected by the gender biases of his social and literary milieux. It addresses likely influences on Schoenberg's worldview including the philosophy of Otto Weininger, Freudian psychoanalysis, and a complex web of personal relationships. Finally, this analysis highlights the relevance of Schoenberg's world and its constructions of gender to modern performance practice, and argues that performers must consider interrelated historical, textual, and musical factors when interpreting Hanging Gardens in new contexts.
ContributorsGinger, Kerry Anne (Author) / FitzPatrick, Carole (Thesis advisor) / Dreyfoos, Dale (Committee member) / Mook, Richard (Committee member) / Norton, Kay (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2012
151384-Thumbnail Image.png
Description
ABSTRACT This document introduces singers and voice teachers to Dr. Alfred A. Tomatis's listening training method with a particular emphasis on its relevance to singers. After presenting an overview of Tomatis's work in the field of audio-psycho-phonology (circa 1947 through the 1990s) and specific ways that aspects of his theory

ABSTRACT This document introduces singers and voice teachers to Dr. Alfred A. Tomatis's listening training method with a particular emphasis on its relevance to singers. After presenting an overview of Tomatis's work in the field of audio-psycho-phonology (circa 1947 through the 1990s) and specific ways that aspects of his theory are relevant to singers' performance skills, this project investigates the impact of listening training on singers by examining published research. The studies described in this document have investigated the impact of listening training on elements of the singer's skill set, including but not limited to measures of vocal quality such as intonation, vocal control, intensity, and sonority, as well as language pronunciation and general musicianship. Anecdotal evidence, presented by performers and their observers, is also considered. The evidence generated by research studies and anecdotal reports strongly favors Tomatis-based listening training as a valid way to improve singers' performance abilities.
ContributorsHurley, Susan Lynn (Author) / Doan, Jerry (Thesis advisor) / Dreyfoos, Dale (Committee member) / Kopta, Anne (Committee member) / Norton, Kay (Committee member) / Thompson, Billie M (Committee member) / Arizona State University (Publisher)
Created2012
151596-Thumbnail Image.png
Description
Carrier lifetime is one of the few parameters which can give information about the low defect densities in today's semiconductors. In principle there is no lower limit to the defect density determined by lifetime measurements. No other technique can easily detect defect densities as low as 10-9 - 10-10 cm-3

Carrier lifetime is one of the few parameters which can give information about the low defect densities in today's semiconductors. In principle there is no lower limit to the defect density determined by lifetime measurements. No other technique can easily detect defect densities as low as 10-9 - 10-10 cm-3 in a simple, contactless room temperature measurement. However in practice, recombination lifetime τr measurements such as photoconductance decay (PCD) and surface photovoltage (SPV) that are widely used for characterization of bulk wafers face serious limitations when applied to thin epitaxial layers, where the layer thickness is smaller than the minority carrier diffusion length Ln. Other methods such as microwave photoconductance decay (µ-PCD), photoluminescence (PL), and frequency-dependent SPV, where the generated excess carriers are confined to the epitaxial layer width by using short excitation wavelengths, require complicated configuration and extensive surface passivation processes that make them time-consuming and not suitable for process screening purposes. Generation lifetime τg, typically measured with pulsed MOS capacitors (MOS-C) as test structures, has been shown to be an eminently suitable technique for characterization of thin epitaxial layers. It is for these reasons that the IC community, largely concerned with unipolar MOS devices, uses lifetime measurements as a "process cleanliness monitor." However when dealing with ultraclean epitaxial wafers, the classic MOS-C technique measures an effective generation lifetime τg eff which is dominated by the surface generation and hence cannot be used for screening impurity densities. I have developed a modified pulsed MOS technique for measuring generation lifetime in ultraclean thin p/p+ epitaxial layers which can be used to detect metallic impurities with densities as low as 10-10 cm-3. The widely used classic version has been shown to be unable to effectively detect such low impurity densities due to the domination of surface generation; whereas, the modified version can be used suitably as a metallic impurity density monitoring tool for such cases.
ContributorsElhami Khorasani, Arash (Author) / Alford, Terry (Thesis advisor) / Goryll, Michael (Committee member) / Bertoni, Mariana (Committee member) / Arizona State University (Publisher)
Created2013
151606-Thumbnail Image.png
Description
William Levi Dawson (1899-1990), director of the Tuskegee Institute Choir from 1931 to 1956, was one of the most important arrangers of Negro spirituals in the twentieth century. He is also remembered as an outstanding composer, conductor, speaker, and leader of festival choruses. His arrangements are still sung by choirs

William Levi Dawson (1899-1990), director of the Tuskegee Institute Choir from 1931 to 1956, was one of the most important arrangers of Negro spirituals in the twentieth century. He is also remembered as an outstanding composer, conductor, speaker, and leader of festival choruses. His arrangements are still sung by choirs all over the world. Save a small number of dissertations and various articles, however, very little has been written about him. In fact, almost no significant writing has been undertaken utilizing the Dawson papers held at the Manuscript, Archives, and Rare Books Library at Emory University in Atlanta, Georgia. This study utilizes that collection in examining four areas of Dawson's life: his work as a composer, his work as an arranger of Negro spirituals, his work as a choral conductor and music pedagogue, and his life as an African American man living in segregated times. Dawson is shown as a thoughtful, deliberate practitioner of his art who built his career with intention, and who, through his various activities, sought both to affirm the traditional music of his people and to transcend his era's problems with the definitions, associations, and prejudices attached to the term "race." Using a diverse selection of letters, notes, and speeches held in the archive, it is possible to develop a fuller, more nuanced portrait of Dawson. Through a thorough examination of a select few of these documents, his growth can be traced from a young composer living in Chicago, to a college choral director dealing with the realities of racial inequality in the mid-twentieth century, to a seasoned, respected elder in his field, endeavoring to pass on to others knowledge of the music he spent his life arranging and teaching.
ContributorsHuff, Vernon Edward (Author) / Schildkret, David (Thesis advisor) / Norton, Kay (Committee member) / Tobias, Evan (Committee member) / Arizona State University (Publisher)
Created2013
151459-Thumbnail Image.png
Description
Throughout history composers and artists have been inspired by the natural world. Nature's influence on music is extraordinary, though water in particular, has had a unique magnetic pull. The large number of compositions dealing with water, from Handel's Water Music (1717) to Ros Bandt's and Leah Barclay's Rivers Talk (2012),

Throughout history composers and artists have been inspired by the natural world. Nature's influence on music is extraordinary, though water in particular, has had a unique magnetic pull. The large number of compositions dealing with water, from Handel's Water Music (1717) to Ros Bandt's and Leah Barclay's Rivers Talk (2012), reflects this continuous fascination. Since the late 1940s, composers have ventured further and brought actual sounds from the environment, including water recorded on tape, into the musical arena. Moreover, since the 1960s, some composers have nudged their listeners to become more ecologically aware. Much skepticism exists, as with any unconventional idea in history, and as a result compositions belonging to this realm of musique concrète are not as widely recognized and examined as they should be. In this thesis, I consider works of three composers: Annea Lockwood, Eve Beglarian, and Leah Barclay, who not only draw inspiration from nature, but also use their creativity to call attention to pristine environments. All three composers embrace the idea that music can be broadly defined and use technology as a tool to communicate their artistic visions. These artists are from three different countries and represent three generations of composers who set precedents for a new way of composing, listening to, performing, and thinking about music and the environment. This thesis presents case studies of Lockwood's A Sound Map of the Danube River, Beglarian's Mississippi River Project, and Barclay's Sound Mirrors. This thesis draws on unpublished correspondence with the composers, analytical theories of R. Murray Schafer, Barry Truax, and Martijn Voorvelt, among others, musicological publications, eco-critical and environmental studies by Al Gore, Bill McKibben, and Vandana Shiva, as well as research by feminist scholars. As there is little written on music and nature from an eco-critical and eco-feminist standpoint, this thesis will contribute to the recognition of significant figures in contemporary music that might otherwise be overlooked. In this study I maintain that composers and sound artists engage with sounds in ways that reveal aspects of particular places, and their attitudes toward these places to lead listeners toward a greater ecological awareness.
ContributorsRichardson, Jamilyn (Author) / Feisst, Sabine (Thesis advisor) / Solís, Ted (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2012
151512-Thumbnail Image.png
Description
Photodetectors in the 1.7 to 4.0 μm range are being commercially developed on InP substrates to meet the needs of longer wavelength applications such as thermal and medical sensing. Currently, these devices utilize high indium content metamorphic Ga1-xInxAs (x > 0.53) layers to extend the wavelength range beyond the 1.7

Photodetectors in the 1.7 to 4.0 μm range are being commercially developed on InP substrates to meet the needs of longer wavelength applications such as thermal and medical sensing. Currently, these devices utilize high indium content metamorphic Ga1-xInxAs (x > 0.53) layers to extend the wavelength range beyond the 1.7 μm achievable using lattice matched GaInAs. The large lattice mismatch required to reach the extended wavelengths results in photodetector materials that contain a large number of misfit dislocations. The low quality of these materials results in a large nonradiative Shockley Read Hall generation/recombination rate that is manifested as an undesirable large thermal noise level in these photodetectors. This work focuses on utilizing the different band structure engineering methods to design more efficient devices on InP substrates. One prospective way to improve photodetector performance at the extended wavelengths is to utilize lattice matched GaInAs/GaAsSb structures that have a type-II band alignment, where the ground state transition energy of the superlattice is smaller than the bandgap of either constituent material. Over the extended wavelength range of 2 to 3 μm this superlattice structure has an optimal period thickness of 3.4 to 5.2 nm and a wavefunction overlap of 0.8 to 0.4, respectively. In using a type-II superlattice to extend the cutoff wavelength there is a tradeoff between the wavelength reached and the electron-hole wavefunction overlap realized, and hence absorption coefficient achieved. This tradeoff and the subsequent reduction in performance can be overcome by two methods: adding bismuth to this type-II material system; applying strain on both layers in the system to attain strain-balanced condition. These allow the valance band alignment and hence the wavefunction overlap to be tuned independently of the wavelength cutoff. Adding 3% bismuth to the GaInAs constituent material, the resulting lattice matched Ga0.516In0.484As0.970Bi0.030/GaAs0.511Sb0.489superlattice realizes a 50% larger absorption coefficient. While as, similar results can be achieved with strain-balanced condition with strain limited to 1.9% on either layer. The optimal design rules derived from the different possibilities make it feasible to extract superlattice period thickness with the best absorption coefficient for any cutoff wavelength in the range.  
ContributorsSharma, Ankur R (Author) / Johnson, Shane (Thesis advisor) / Goryll, Michael (Committee member) / Roedel, Ronald (Committee member) / Arizona State University (Publisher)
Created2013
152598-Thumbnail Image.png
Description
As an organist, church musician, and educator, Clifford Demarest (1874-1946) was a prominent figure in New York during the first half of the twentieth century. However, prior to this thesis, Demarest's place within the history of American music, like that of many of his contemporaries, was all but neglected. This

As an organist, church musician, and educator, Clifford Demarest (1874-1946) was a prominent figure in New York during the first half of the twentieth century. However, prior to this thesis, Demarest's place within the history of American music, like that of many of his contemporaries, was all but neglected. This research reveals Clifford Demarest as an influential figure in American musical history from around 1900 to his retirement in 1937. Led by contemporary accounts, I trace Demarest's musical influence through his three musical careers: professional organist, church musician, and educator. As a prominent figure in the fledgling American Guild of Organists, Demarest was dedicated to the unification of its members and the artistic legitimacy of the organist profession. As the organist and choir director of the Church of the Messiah, later the Community Church of New York (1911-1946, inclusive), Demarest played an integral part in the liberal atmosphere fostered by the congregation's minister, John Haynes Holmes (1879-1964). Together Holmes and Demarest directly influenced the nascent National Association for the Advancement of Colored People and supported luminaries of the Harlem Renaissance. Influential figures such as Langston Hughes (1902-1967), Augustus Granville Dill (1881-1956), Egbert Ethelred Brown (1875-1956), and Countee Cullen (1903-1946) were inspired by the liberal environment in the Church of the Messiah; however, prior to this research, their connections to the church were unexplored. As the music supervisor of Tenafly High School and later, for the state of New Jersey, Demarest influenced countless students through his passion for music. His compositions for student orchestras are among the earliest to elevate the artistic standards of school music ensembles during the first four decades of the twentieth century. Archival sources such as church records, letters, and newspaper editorials, are synthesized with current research to characterize Demarest's place in these three professional orbits of the early twentieth century. His story also represents those of countless other working musicians from his era that have been forgotten. Therefore, this research opens an important new research field – a window into the dynamic world of the American organist.
ContributorsHicks, Glen W (Author) / Saucier, Catherine (Thesis advisor) / Norton, Kay (Thesis advisor) / Holbrook, Amy (Committee member) / Arizona State University (Publisher)
Created2014
152557-Thumbnail Image.png
Description
ABSTRACT A survey of board-certified music therapists who identified themselves as self-employed was conducted to examine current methods of marketing related to planning, positioning, promotion, and implementation within a music therapy private practice or contracting model, as well as identify trends in marketing methods as compared to prior research. Respondents

ABSTRACT A survey of board-certified music therapists who identified themselves as self-employed was conducted to examine current methods of marketing related to planning, positioning, promotion, and implementation within a music therapy private practice or contracting model, as well as identify trends in marketing methods as compared to prior research. Respondents (n=273) provided data via online survey as to current marketing practices, assessment of personal marketing skills, and views on marketing's overall role in their businesses. Historical, qualitative, and quantitative distinctions were developed through statistical analysis as to the relationship between respondents' views and current marketing practices. Results show that self-employed music therapists agree marketing is a vital part of their business and that creating a unique brand identity is necessary to differentiate oneself from the competition. A positive correlation was identified between those who are confident in their marketing skills and the dollar amount of rates charged for services. Presentations, websites, and networking were regarded as the top marketing vehicles currently used to garner new business, with a trend towards increased use of social media as a potential marketing avenue. Challenges for respondents appear to include the creation and implementation of written marketing plans and maintaining measurable marketing objectives. Barriers to implementation may include confidence in personal marketing skills, time required, and financial constraints. The majority of respondents agreed that taking an 8-hour CMTE course regarding marketing methods for self-employed music therapists would be beneficial.
ContributorsTonkinson, Scott (Author) / Crowe, Barbara J. (Thesis advisor) / Rio, Robin (Committee member) / Norton, Kay (Committee member) / Arizona State University (Publisher)
Created2014
152285-Thumbnail Image.png
Description
Zinc oxide (ZnO), a naturally n-type semiconductor has been identified as a promising candidate to replace indium tin oxide (ITO) as the transparent electrode in solar cells, because of its wide bandgap (3.37 eV), abundant source materials and suitable refractive index (2.0 at 600 nm). Spray deposition is a convenient

Zinc oxide (ZnO), a naturally n-type semiconductor has been identified as a promising candidate to replace indium tin oxide (ITO) as the transparent electrode in solar cells, because of its wide bandgap (3.37 eV), abundant source materials and suitable refractive index (2.0 at 600 nm). Spray deposition is a convenient and low cost technique for large area and uniform deposition of semiconductor thin films. In particular, it provides an easier way to dope the film by simply adding the dopant precursor into the starting solution. In order to reduce the resistivity of undoped ZnO, many works have been done by doping in the ZnO with either group IIIA elements or VIIA elements using spray pyrolysis. However, the resistivity is still too high to meet TCO's resistivity requirement. In the present work, a novel co-spray deposition technique is developed to bypass a fundamental limitation in the conventional spray deposition technique, i.e. the deposition of metal oxides from incompatible precursors in the starting solution. With this technique, ZnO films codoped with one cationic dopant, Al, Cr, or Fe, and an anionic dopant, F, have been successfully synthesized, in which F is incompatible with all these three cationic dopants. Two starting solutions were prepared and co-sprayed through two separate spray heads. One solution contained only the F precursor, NH 4F. The second solution contained the Zn and one cationic dopant precursors, Zn(O 2CCH 3) 2 and AlCl 3, CrCl 3, or FeCl 3. The deposition was carried out at 500 &degC; on soda-lime glass in air. Compared to singly-doped ZnO thin films, codoped ZnO samples showed better electrical properties. Besides, a minimum sheet resistance, 55.4 Ω/sq, was obtained for Al and F codoped ZnO films after vacuum annealing at 400 &degC;, which was lower than singly-doped ZnO with either Al or F. The transmittance for the Al and F codoped ZnO samples was above 90% in the visible range. This co-spray deposition technique provides a simple and cost-effective way to synthesize metal oxides from incompatible precursors with improved properties.
ContributorsZhou, Bin (Author) / Tao, Meng (Thesis advisor) / Goryll, Michael (Committee member) / Vasileska, Dragica (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2013
152288-Thumbnail Image.png
Description
Chalcogenide glass (ChG) materials have gained wide attention because of their applications in conductive bridge random access memory (CBRAM), phase change memories (PC-RAM), optical rewritable disks (CD-RW and DVD-RW), microelectromechanical systems (MEMS), microfluidics, and optical communications. One of the significant properties of ChG materials is the change in the resistivity

Chalcogenide glass (ChG) materials have gained wide attention because of their applications in conductive bridge random access memory (CBRAM), phase change memories (PC-RAM), optical rewritable disks (CD-RW and DVD-RW), microelectromechanical systems (MEMS), microfluidics, and optical communications. One of the significant properties of ChG materials is the change in the resistivity of the material when a metal such as Ag or Cu is added to it by diffusion. This study demonstrates the potential radiation-sensing capabilities of two metal/chalcogenide glass device configurations. Lateral and vertical device configurations sense the radiation-induced migration of Ag+ ions in germanium selenide glasses via changes in electrical resistance between electrodes on the ChG. Before irradiation, these devices exhibit a high-resistance `OFF-state' (in the order of 10E12) but following irradiation, with either 60-Co gamma-rays or UV light, their resistance drops to a low-resistance `ON-state' (around 10E3). Lateral devices have exhibited cyclical recovery with room temperature annealing of the Ag doped ChG, which suggests potential uses in reusable radiation sensor applications. The feasibility of producing inexpensive flexible radiation sensors has been demonstrated by studying the effects of mechanical strain and temperature stress on sensors formed on flexible polymer substrate. The mechanisms of radiation-induced Ag/Ag+ transport and reactions in ChG have been modeled using a finite element device simulator, ATLAS. The essential reactions captured by the simulator are radiation-induced carrier generation, combined with reduction/oxidation for Ag species in the chalcogenide film. Metal-doped ChGs are solid electrolytes that have both ionic and electronic conductivity. The ChG based Programmable Metallization Cell (PMC) is a technology platform that offers electric field dependent resistance switching mechanisms by formation and dissolution of nano sized conductive filaments in a ChG solid electrolyte between oxidizable and inert electrodes. This study identifies silver anode agglomeration in PMC devices following large radiation dose exposure and considers device failure mechanisms via electrical and material characterization. The results demonstrate that by changing device structural parameters, silver agglomeration in PMC devices can be suppressed and reliable resistance switching may be maintained for extremely high doses ranging from 4 Mrad(GeSe) to more than 10 Mrad (ChG).
ContributorsDandamudi, Pradeep (Author) / Kozicki, Michael N (Thesis advisor) / Barnaby, Hugh J (Committee member) / Holbert, Keith E. (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2013