Matching Items (34)
Filtering by

Clear all filters

155483-Thumbnail Image.png
Description
A lot of research can be seen in the field of social robotics that majorly concentrate on various aspects of social robots including design of mechanical parts and their move- ment, cognitive speech and face recognition capabilities. Several robots have been developed with the intention of being social, like humans,

A lot of research can be seen in the field of social robotics that majorly concentrate on various aspects of social robots including design of mechanical parts and their move- ment, cognitive speech and face recognition capabilities. Several robots have been developed with the intention of being social, like humans, without much emphasis on how human-like they actually look, in terms of expressions and behavior. Fur- thermore, a substantial disparity can be seen in the success of results of any research involving ”humanizing” the robots’ behavior, or making it behave more human-like as opposed to research into biped movement, movement of individual body parts like arms, fingers, eyeballs, or human-like appearance itself. The research in this paper in- volves understanding why the research on facial expressions of social humanoid robots fails where it is not accepted completely in the current society owing to the uncanny valley theory. This paper identifies the problem with the current facial expression research as information retrieval problem. This paper identifies the current research method in the design of facial expressions of social robots, followed by using deep learning as similarity evaluation technique to measure the humanness of the facial ex- pressions developed from the current technique and further suggests a novel solution to the facial expression design of humanoids using deep learning.
ContributorsMurthy, Shweta (Author) / Gaffar, Ashraf (Thesis advisor) / Ghazarian, Arbi (Committee member) / Gonzalez-Sanchez, Javier (Committee member) / Arizona State University (Publisher)
Created2017
155715-Thumbnail Image.png
Description
Today, in a world of automation, the impact of Artificial Intelligence can be seen in every aspect of our lives. Starting from smart homes to self-driving cars everything is run using intelligent, adaptive technologies. In this thesis, an attempt is made to analyze the correlation between driving quality and its

Today, in a world of automation, the impact of Artificial Intelligence can be seen in every aspect of our lives. Starting from smart homes to self-driving cars everything is run using intelligent, adaptive technologies. In this thesis, an attempt is made to analyze the correlation between driving quality and its impact on the use of car infotainment system and vice versa and hence the driver distraction. Various internal and external driving factors have been identified to understand the dependency and seriousness of driver distraction caused due to the car infotainment system. We have seen a number UI/UX changes, speech recognition advancements in cars to reduce distraction. But reducing the number of casualties on road is still a persisting problem in hand as the cognitive load on the driver is considered to be one of the primary reasons for distractions leading to casualties. In this research, a pathway has been provided to move towards building an artificially intelligent, adaptive and interactive infotainment which is trained to behave differently by analyzing the driving quality without the intervention of the driver. The aim is to not only shift focus of the driver from screen to street view, but to also change the inherent behavior of the infotainment system based on the driving statistics at that point in time without the need for driver intervention.
ContributorsSuresh, Seema (Author) / Gaffar, Ashraf (Thesis advisor) / Sodemann, Angela (Committee member) / Gonzalez-Sanchez, Javier (Committee member) / Arizona State University (Publisher)
Created2017
155205-Thumbnail Image.png
Description
When software design teams attempt to collaborate on different design docu-

ments they suffer from a serious collaboration problem. Designers collaborate either in person or remotely. In person collaboration is expensive but effective. Remote collaboration is inexpensive but inefficient. In, order to gain the most benefit from collaboration there needs to

When software design teams attempt to collaborate on different design docu-

ments they suffer from a serious collaboration problem. Designers collaborate either in person or remotely. In person collaboration is expensive but effective. Remote collaboration is inexpensive but inefficient. In, order to gain the most benefit from collaboration there needs to be remote collaboration that is not only cheap but also as efficient as physical collaboration.

Remotely collaborating on software design relies on general tools such as Word, and Excel. These tools are then shared in an inefficient manner by using either email, cloud based file locking tools, or something like google docs. Because these tools either increase the number of design building blocks, or limit the number

of available times in which one can work on a specific document, they drastically decrease productivity.

This thesis outlines a new methodology to increase design productivity, accom- plished by providing design specific collaboration. Using version control systems, this methodology allows for effective project collaboration between remotely lo- cated design teams. The methodology of this paper encompasses role management, policy management, and design artifact management, including nonfunctional re- quirements. Version control can be used for different design products, improving communication and productivity amongst design teams. This thesis outlines this methodology and then outlines a proof of concept tool that embodies the core of these principles.
ContributorsPike, Shawn (Author) / Gaffar, Ashraf (Thesis advisor) / Lindquist, Timothy (Committee member) / Whitehouse, Richard (Committee member) / Arizona State University (Publisher)
Created2016
168404-Thumbnail Image.png
Description
Communicating with computers through thought has been a remarkable achievement in recent years. This was made possible by the use of Electroencephalography (EEG). Brain-computer interface (BCI) relies heavily on Electroencephalography (EEG) signals for communication between humans and computers. With the advent ofdeep learning, many studies recently applied these techniques to

Communicating with computers through thought has been a remarkable achievement in recent years. This was made possible by the use of Electroencephalography (EEG). Brain-computer interface (BCI) relies heavily on Electroencephalography (EEG) signals for communication between humans and computers. With the advent ofdeep learning, many studies recently applied these techniques to EEG data to perform various tasks like emotion recognition, motor imagery classification, sleep analysis, and many more. Despite the rise of interest in EEG signal classification, very few studies have explored the MindBigData dataset, which collects EEG signals recorded at the stimulus of seeing a digit and thinking about it. This dataset takes us closer to realizing the idea of mind-reading or communication via thought. Thus classifying these signals into the respective digit that the user thinks about is a challenging task. This serves as a motivation to study this dataset and apply existing deep learning techniques to study it. Given the recent success of transformer architecture in different domains like Computer Vision and Natural language processing, this thesis studies transformer architecture for EEG signal classification. Also, it explores other deep learning techniques for the same. As a result, the proposed classification pipeline achieves comparable performance with the existing methods.
ContributorsMuglikar, Omkar Dushyant (Author) / Wang, Yalin (Thesis advisor) / Liang, Jianming (Committee member) / Venkateswara, Hemanth (Committee member) / Arizona State University (Publisher)
Created2021
157443-Thumbnail Image.png
Description
Facial Expressions Recognition using the Convolution Neural Network has been actively researched upon in the last decade due to its high number of applications in the human-computer interaction domain. As Convolution Neural Networks have the exceptional ability to learn, they outperform the methods using handcrafted features. Though the state-of-the-art models

Facial Expressions Recognition using the Convolution Neural Network has been actively researched upon in the last decade due to its high number of applications in the human-computer interaction domain. As Convolution Neural Networks have the exceptional ability to learn, they outperform the methods using handcrafted features. Though the state-of-the-art models achieve high accuracy on the lab-controlled images, they still struggle for the wild expressions. Wild expressions are captured in a real-world setting and have natural expressions. Wild databases have many challenges such as occlusion, variations in lighting conditions and head poses. In this work, I address these challenges and propose a new model containing a Hybrid Convolutional Neural Network with a Fusion Layer. The Fusion Layer utilizes a combination of the knowledge obtained from two different domains for enhanced feature extraction from the in-the-wild images. I tested my network on two publicly available in-the-wild datasets namely RAF-DB and AffectNet. Next, I tested my trained model on CK+ dataset for the cross-database evaluation study. I prove that my model achieves comparable results with state-of-the-art methods. I argue that it can perform well on such datasets because it learns the features from two different domains rather than a single domain. Last, I present a real-time facial expression recognition system as a part of this work where the images are captured in real-time using laptop camera and passed to the model for obtaining a facial expression label for it. It indicates that the proposed model has low processing time and can produce output almost instantly.
ContributorsChhabra, Sachin (Author) / Li, Baoxin (Thesis advisor) / Venkateswara, Hemanth (Committee member) / Srivastava, Siddharth (Committee member) / Arizona State University (Publisher)
Created2019
171832-Thumbnail Image.png
Description
Visual Odometry is one of the key aspects of robotic localization and mapping. Visual Odometry consists of many geometric-based approaches that convert visual data (images) into pose estimates of where the robot is in space. The classical geometric methods have shown promising results; they are carefully crafted and built explicitly

Visual Odometry is one of the key aspects of robotic localization and mapping. Visual Odometry consists of many geometric-based approaches that convert visual data (images) into pose estimates of where the robot is in space. The classical geometric methods have shown promising results; they are carefully crafted and built explicitly for these tasks. However, such geometric methods require extreme fine-tuning and extensive prior knowledge to set up these systems for different scenarios. Classical Geometric approaches also require significant post-processing and optimization to minimize the error between the estimated pose and the global truth. In this body of work, the deep learning model was formed by combining SuperPoint and SuperGlue. The resulting model does not require any prior fine-tuning. It has been trained to enable both outdoor and indoor settings. The proposed deep learning model is applied to the Karlsruhe Institute of Technology and Toyota Technological Institute dataset along with other classical geometric visual odometry models. The proposed deep learning model has not been trained on the Karlsruhe Institute of Technology and Toyota Technological Institute dataset. It is only during experimentation that the deep learning model is first introduced to the Karlsruhe Institute of Technology and Toyota Technological Institute dataset. Using the monocular grayscale images from the visual odometer files of the Karlsruhe Institute of Technology and Toyota Technological Institute dataset, through the experiment to test the viability of the models for different sequences. The experiment has been performed on eight different sequences and has obtained the Absolute Trajectory Error and the time taken for each sequence to finish the computation. From the obtained results, there are inferences drawn from the classical and deep learning approaches.
ContributorsVaidyanathan, Venkatesh (Author) / Venkateswara, Hemanth (Thesis advisor) / McDaniel, Troy (Thesis advisor) / Michael, Katina (Committee member) / Arizona State University (Publisher)
Created2022
171646-Thumbnail Image.png
Description
Fatigue in radiology is a readily studied area. Machine learning concepts appliedto the identification of fatigue are also readily available. However, the intersection between the two areas is not a relative commonality. This study looks to explore the intersection of fatigue in radiology and machine learning concepts by analyzing temporal trends in multivariate

Fatigue in radiology is a readily studied area. Machine learning concepts appliedto the identification of fatigue are also readily available. However, the intersection between the two areas is not a relative commonality. This study looks to explore the intersection of fatigue in radiology and machine learning concepts by analyzing temporal trends in multivariate time series data. A novel methodological approach using support vector machines to observe temporal trends in time-based aggregations of time series data is proposed. The data used in the study is captured in a real-world, unconstrained radiology setting where gaze and facial metrics are captured from radiologists performing live image reviews. The captured data is formatted into classes whose labels represent a window of time during the radiologist’s review. Using the labeled classes, the decision function and accuracy of trained, linear support vector machine models are evaluated to produce a visualization of temporal trends and critical inflection points as well as the contribution of individual features. Consequently, the study finds valid potential justification in the methods suggested. The study offers a prospective use of maximummargin classification to demarcate the manipulation of an abstract phenomenon such as fatigue on temporal data. Potential applications are envisioned that could improve the workload distribution of the medical act.
ContributorsHayes, Matthew (Author) / McDaniel, Troy (Thesis advisor) / Coza, Aurel (Committee member) / Venkateswara, Hemanth (Committee member) / Arizona State University (Publisher)
Created2022
154330-Thumbnail Image.png
Description
A well-defined Software Complexity Theory which captures the Cognitive means of algorithmic information comprehension is needed in the domain of cognitive informatics & computing. The existing complexity heuristics are vague and empirical. Industrial software is a combination of algorithms implemented. However, it would be wrong to conclude that algorithmic space

A well-defined Software Complexity Theory which captures the Cognitive means of algorithmic information comprehension is needed in the domain of cognitive informatics & computing. The existing complexity heuristics are vague and empirical. Industrial software is a combination of algorithms implemented. However, it would be wrong to conclude that algorithmic space and time complexity is software complexity. An algorithm with multiple lines of pseudocode might sometimes be simpler to understand that the one with fewer lines. So, it is crucial to determine the Algorithmic Understandability for an algorithm, in order to better understand Software Complexity. This work deals with understanding Software Complexity from a cognitive angle. Also, it is vital to compute the effect of reducing cognitive complexity. The work aims to prove three important statements. The first being, that, while algorithmic complexity is a part of software complexity, software complexity does not solely and entirely mean algorithmic Complexity. Second, the work intends to bring to light the importance of cognitive understandability of algorithms. Third, is about the impact, reducing Cognitive Complexity, would have on Software Design and Development.
ContributorsMannava, Manasa Priyamvada (Author) / Ghazarian, Arbi (Thesis advisor) / Gaffar, Ashraf (Committee member) / Bansal, Ajay (Committee member) / Arizona State University (Publisher)
Created2016
157758-Thumbnail Image.png
Description
Endowing machines with the ability to understand digital images is a critical task for a host of high-impact applications, including pathology detection in radiographic imaging, autonomous vehicles, and assistive technology for the visually impaired. Computer vision systems rely on large corpora of annotated data in order to train task-specific visual

Endowing machines with the ability to understand digital images is a critical task for a host of high-impact applications, including pathology detection in radiographic imaging, autonomous vehicles, and assistive technology for the visually impaired. Computer vision systems rely on large corpora of annotated data in order to train task-specific visual recognition models. Despite significant advances made over the past decade, the fact remains collecting and annotating the data needed to successfully train a model is a prohibitively expensive endeavor. Moreover, these models are prone to rapid performance degradation when applied to data sampled from a different domain. Recent works in the development of deep adaptation networks seek to overcome these challenges by facilitating transfer learning between source and target domains. In parallel, the unification of dominant semi-supervised learning techniques has illustrated unprecedented potential for utilizing unlabeled data to train classification models in defiance of discouragingly meager sets of annotated data.

In this thesis, a novel domain adaptation algorithm -- Domain Adaptive Fusion (DAF) -- is proposed, which encourages a domain-invariant linear relationship between the pixel-space of different domains and the prediction-space while being trained under a domain adversarial signal. The thoughtful combination of key components in unsupervised domain adaptation and semi-supervised learning enable DAF to effectively bridge the gap between source and target domains. Experiments performed on computer vision benchmark datasets for domain adaptation endorse the efficacy of this hybrid approach, outperforming all of the baseline architectures on most of the transfer tasks.
ContributorsDudley, Andrew, M.S (Author) / Panchanathan, Sethuraman (Thesis advisor) / Venkateswara, Hemanth (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2019
157788-Thumbnail Image.png
Description
Parents fulfill a pivotal role in early childhood development of social and communication

skills. In children with autism, the development of these skills can be delayed. Applied

behavioral analysis (ABA) techniques have been created to aid in skill acquisition.

Among these, pivotal response treatment (PRT) has been empirically shown to foster

improvements. Research into

Parents fulfill a pivotal role in early childhood development of social and communication

skills. In children with autism, the development of these skills can be delayed. Applied

behavioral analysis (ABA) techniques have been created to aid in skill acquisition.

Among these, pivotal response treatment (PRT) has been empirically shown to foster

improvements. Research into PRT implementation has also shown that parents can be

trained to be effective interventionists for their children. The current difficulty in PRT

training is how to disseminate training to parents who need it, and how to support and

motivate practitioners after training.

Evaluation of the parents’ fidelity to implementation is often undertaken using video

probes that depict the dyadic interaction occurring between the parent and the child during

PRT sessions. These videos are time consuming for clinicians to process, and often result

in only minimal feedback for the parents. Current trends in technology could be utilized to

alleviate the manual cost of extracting data from the videos, affording greater

opportunities for providing clinician created feedback as well as automated assessments.

The naturalistic context of the video probes along with the dependence on ubiquitous

recording devices creates a difficult scenario for classification tasks. The domain of the

PRT video probes can be expected to have high levels of both aleatory and epistemic

uncertainty. Addressing these challenges requires examination of the multimodal data

along with implementation and evaluation of classification algorithms. This is explored

through the use of a new dataset of PRT videos.

The relationship between the parent and the clinician is important. The clinician can

provide support and help build self-efficacy in addition to providing knowledge and

modeling of treatment procedures. Facilitating this relationship along with automated

feedback not only provides the opportunity to present expert feedback to the parent, but

also allows the clinician to aid in personalizing the classification models. By utilizing a

human-in-the-loop framework, clinicians can aid in addressing the uncertainty in the

classification models by providing additional labeled samples. This will allow the system

to improve classification and provides a person-centered approach to extracting

multimodal data from PRT video probes.
ContributorsCopenhaver Heath, Corey D (Author) / Panchanathan, Sethuraman (Thesis advisor) / McDaniel, Troy (Committee member) / Venkateswara, Hemanth (Committee member) / Davulcu, Hasan (Committee member) / Gaffar, Ashraf (Committee member) / Arizona State University (Publisher)
Created2019