Matching Items (16)

Filtering by

Clear all filters

154330-Thumbnail Image.png

Cognitive software complexity analysis

Description

A well-defined Software Complexity Theory which captures the Cognitive means of algorithmic information comprehension is needed in the domain of cognitive informatics & computing. The existing complexity heuristics are vague and empirical. Industrial software is a combination of algorithms implemented.

A well-defined Software Complexity Theory which captures the Cognitive means of algorithmic information comprehension is needed in the domain of cognitive informatics & computing. The existing complexity heuristics are vague and empirical. Industrial software is a combination of algorithms implemented. However, it would be wrong to conclude that algorithmic space and time complexity is software complexity. An algorithm with multiple lines of pseudocode might sometimes be simpler to understand that the one with fewer lines. So, it is crucial to determine the Algorithmic Understandability for an algorithm, in order to better understand Software Complexity. This work deals with understanding Software Complexity from a cognitive angle. Also, it is vital to compute the effect of reducing cognitive complexity. The work aims to prove three important statements. The first being, that, while algorithmic complexity is a part of software complexity, software complexity does not solely and entirely mean algorithmic Complexity. Second, the work intends to bring to light the importance of cognitive understandability of algorithms. Third, is about the impact, reducing Cognitive Complexity, would have on Software Design and Development.

Contributors

Agent

Created

Date Created
2016

153487-Thumbnail Image.png

Using contextual information to improve phishing warning effectiveness

Description

Internet browsers are today capable of warning internet users of a potential phishing attack. Browsers identify these websites by referring to blacklists of reported phishing websites maintained by trusted organizations like Google, Phishtank etc. On identifying a Unified Resource Locator

Internet browsers are today capable of warning internet users of a potential phishing attack. Browsers identify these websites by referring to blacklists of reported phishing websites maintained by trusted organizations like Google, Phishtank etc. On identifying a Unified Resource Locator (URL) requested by a user as a reported phishing URL, browsers like Mozilla Firefox and Google Chrome display an 'active' warning message in an attempt to stop the user from making a potentially dangerous decision of visiting the website and sharing confidential information like username-password, credit card information, social security number etc.

However, these warnings are not always successful at safeguarding the user from a phishing attack. On several occasions, users ignore these warnings and 'click through' them, eventually landing at the potentially dangerous website and giving away confidential information. Failure to understand the warning, failure to differentiate different types of browser warnings, diminishing trust on browser warnings due to repeated encounter are some of the reasons that make users ignore these warnings. It is important to address these factors in order to eventually improve a user’s reaction to these warnings.

In this thesis, I propose a novel design to improve the effectiveness and reliability of phishing warning messages. This design utilizes the name of the target website that a fake website is mimicking, to display a simple, easy to understand and interactive warning message with the primary objective of keeping the user away from a potentially spoof website.

Contributors

Agent

Created

Date Created
2015

Modeling and measuring cognitive load to reduce driver distraction in smart cars

Description

Driver distraction research has a long history spanning nearly 50 years, intensifying in the last decade. The focus has always been on identifying the distractive tasks and measuring the respective harm level. As in-vehicle technology advances, the list of distractive

Driver distraction research has a long history spanning nearly 50 years, intensifying in the last decade. The focus has always been on identifying the distractive tasks and measuring the respective harm level. As in-vehicle technology advances, the list of distractive activities grows along with crash risk. Additionally, the distractive activities become more common and complicated, especially with regard to In-Car Interactive System. This work's main focus is on driver distraction caused by the in-car interactive System. There have been many User Interaction Designs (Buttons, Speech, Visual) for Human-Car communication, in the past and currently present. And, all related studies suggest that driver distraction level is still high and there is a need for a better design. Multimodal Interaction is a design approach, which relies on using multiple modes for humans to interact with the car & hence reducing driver distraction by allowing the driver to choose the most suitable mode with minimum distraction. Additionally, combining multiple modes simultaneously provides more natural interaction, which could lead to less distraction. The main goal of MMI is to enable the driver to be more attentive to driving tasks and spend less time fiddling with distractive tasks. Engineering based method is used to measure driver distraction. This method uses metrics like Reaction time, Acceleration, Lane Departure obtained from test cases.

Contributors

Agent

Created

Date Created
2015

154625-Thumbnail Image.png

Data science for small businesses

Description

This reports investigates the general day to day problems faced by small businesses, particularly small vendors, in areas of marketing and general management. Due to lack of man power, internet availability and properly documented data, small business cannot optimize their

This reports investigates the general day to day problems faced by small businesses, particularly small vendors, in areas of marketing and general management. Due to lack of man power, internet availability and properly documented data, small business cannot optimize their business. The aim of the research is to address and find a solution to these problems faced, in the form of a tool which utilizes data science. The tool will have features which will aid the vendor to mine their data which they record themselves and find useful information which will benefit their businesses. Since there is lack of properly documented data, One Class Classification using Support Vector Machine (SVM) is used to build a classifying model that can return positive values for audience that is likely to respond to a marketing strategy. Market basket analysis is used to choose products from the inventory in a way that patterns are found amongst them and therefore there is a higher chance of a marketing strategy to attract audience. Also, higher selling products can be used to the vendors' advantage and lesser selling products can be paired with them to have an overall profit to the business. The tool, as envisioned, meets all the requirements that it was set out to have and can be used as a stand alone application to bring the power of data mining into the hands of a small vendor.

Contributors

Agent

Created

Date Created
2016

154694-Thumbnail Image.png

Improving AI planning by using extensible components

Description

Despite incremental improvements over decades, academic planning solutions see relatively little use in many industrial domains despite the relevance of planning paradigms to those problems. This work observes four shortfalls of existing academic solutions which contribute to this lack of

Despite incremental improvements over decades, academic planning solutions see relatively little use in many industrial domains despite the relevance of planning paradigms to those problems. This work observes four shortfalls of existing academic solutions which contribute to this lack of adoption.

To address these shortfalls this work defines model-independent semantics for planning and introduces an extensible planning library. This library is shown to produce feasible results on an existing benchmark domain, overcome the usual modeling limitations of traditional planners, and accommodate domain-dependent knowledge about the problem structure within the planning process.

Contributors

Agent

Created

Date Created
2016

155511-Thumbnail Image.png

Programmable Insight: A Computational Methodology to Explore Online News Use of Frames

Description

The Internet is a major source of online news content. Online news is a form of large-scale narrative text with rich, complex contents that embed deep meanings (facts, strategic communication frames, and biases) for shaping and transitioning standards, values, attitudes,

The Internet is a major source of online news content. Online news is a form of large-scale narrative text with rich, complex contents that embed deep meanings (facts, strategic communication frames, and biases) for shaping and transitioning standards, values, attitudes, and beliefs of the masses. Currently, this body of narrative text remains untapped due—in large part—to human limitations. The human ability to comprehend rich text and extract hidden meanings is far superior to known computational algorithms but remains unscalable. In this research, computational treatment is given to online news framing for exposing a deeper level of expressivity coined “double subjectivity” as characterized by its cumulative amplification effects. A visual language is offered for extracting spatial and temporal dynamics of double subjectivity that may give insight into social influence about critical issues, such as environmental, economic, or political discourse. This research offers benefits of 1) scalability for processing hidden meanings in big data and 2) visibility of the entire network dynamics over time and space to give users insight into the current status and future trends of mass communication.

Contributors

Agent

Created

Date Created
2017

155250-Thumbnail Image.png

Monitoring and Improving User Compliance and Data Quality For Long and Repetitive Self-Reporting MHealth Surveys

Description

For the past decade, mobile health applications are seeing greater acceptance due to their potential to remotely monitor and increase patient engagement, particularly for chronic disease. Sickle Cell Disease is an inherited chronic disorder of red blood cells requiring careful

For the past decade, mobile health applications are seeing greater acceptance due to their potential to remotely monitor and increase patient engagement, particularly for chronic disease. Sickle Cell Disease is an inherited chronic disorder of red blood cells requiring careful pain management. A significant number of mHealth applications have been developed in the market to help clinicians collect and monitor information of SCD patients. Surveys are the most common way to self-report patient conditions. These are non-engaging and suffer from poor compliance. The quality of data gathered from survey instruments while using technology can be questioned as patients may be motivated to complete a task but not motivated to do it well. A compromise in quality and quantity of the collected patient data hinders the clinicians' effort to be able to monitor patient's health on a regular basis and derive effective treatment measures. This research study has two goals. The first is to monitor user compliance and data quality in mHealth apps with long and repetitive surveys delivered. The second is to identify possible motivational interventions to help improve compliance and data quality. As a form of intervention, will introduce intrinsic and extrinsic motivational factors within the application and test it on a small target population. I will validate the impact of these motivational factors by performing a comparative analysis on the test results to determine improvements in user performance. This study is relevant, as it will help analyze user behavior in long and repetitive self-reporting tasks and derive measures to improve user performance. The results will assist software engineers working with doctors in designing and developing improved self-reporting mHealth applications for collecting better quality data and enhance user compliance.

Contributors

Agent

Created

Date Created
2017

157788-Thumbnail Image.png

Multimodal Data Analysis of Dyadic Interactions for an Automated Feedback System Supporting Parent Implementation of Pivotal Response Treatment

Description

Parents fulfill a pivotal role in early childhood development of social and communication

skills. In children with autism, the development of these skills can be delayed. Applied

behavioral analysis (ABA) techniques have been created to aid in skill acquisition.

Among these, pivotal response

Parents fulfill a pivotal role in early childhood development of social and communication

skills. In children with autism, the development of these skills can be delayed. Applied

behavioral analysis (ABA) techniques have been created to aid in skill acquisition.

Among these, pivotal response treatment (PRT) has been empirically shown to foster

improvements. Research into PRT implementation has also shown that parents can be

trained to be effective interventionists for their children. The current difficulty in PRT

training is how to disseminate training to parents who need it, and how to support and

motivate practitioners after training.

Evaluation of the parents’ fidelity to implementation is often undertaken using video

probes that depict the dyadic interaction occurring between the parent and the child during

PRT sessions. These videos are time consuming for clinicians to process, and often result

in only minimal feedback for the parents. Current trends in technology could be utilized to

alleviate the manual cost of extracting data from the videos, affording greater

opportunities for providing clinician created feedback as well as automated assessments.

The naturalistic context of the video probes along with the dependence on ubiquitous

recording devices creates a difficult scenario for classification tasks. The domain of the

PRT video probes can be expected to have high levels of both aleatory and epistemic

uncertainty. Addressing these challenges requires examination of the multimodal data

along with implementation and evaluation of classification algorithms. This is explored

through the use of a new dataset of PRT videos.

The relationship between the parent and the clinician is important. The clinician can

provide support and help build self-efficacy in addition to providing knowledge and

modeling of treatment procedures. Facilitating this relationship along with automated

feedback not only provides the opportunity to present expert feedback to the parent, but

also allows the clinician to aid in personalizing the classification models. By utilizing a

human-in-the-loop framework, clinicians can aid in addressing the uncertainty in the

classification models by providing additional labeled samples. This will allow the system

to improve classification and provides a person-centered approach to extracting

multimodal data from PRT video probes.

Contributors

Agent

Created

Date Created
2019

155483-Thumbnail Image.png

Modeling and Design Analysis of Facial Expressions of Humanoid Social Robots Using Deep Learning Techniques

Description

A lot of research can be seen in the field of social robotics that majorly concentrate on various aspects of social robots including design of mechanical parts and their move- ment, cognitive speech and face recognition capabilities. Several robots have

A lot of research can be seen in the field of social robotics that majorly concentrate on various aspects of social robots including design of mechanical parts and their move- ment, cognitive speech and face recognition capabilities. Several robots have been developed with the intention of being social, like humans, without much emphasis on how human-like they actually look, in terms of expressions and behavior. Fur- thermore, a substantial disparity can be seen in the success of results of any research involving ”humanizing” the robots’ behavior, or making it behave more human-like as opposed to research into biped movement, movement of individual body parts like arms, fingers, eyeballs, or human-like appearance itself. The research in this paper in- volves understanding why the research on facial expressions of social humanoid robots fails where it is not accepted completely in the current society owing to the uncanny valley theory. This paper identifies the problem with the current facial expression research as information retrieval problem. This paper identifies the current research method in the design of facial expressions of social robots, followed by using deep learning as similarity evaluation technique to measure the humanness of the facial ex- pressions developed from the current technique and further suggests a novel solution to the facial expression design of humanoids using deep learning.

Contributors

Agent

Created

Date Created
2017

Smart car technologies: a comprehensive study of the state of the art with analysis and trends

Description

Driving is already a complex task that demands a varying level of cognitive and physical load. With the advancement in technology, the car has become a place for media consumption, a communications center and an interconnected workplace. The number of

Driving is already a complex task that demands a varying level of cognitive and physical load. With the advancement in technology, the car has become a place for media consumption, a communications center and an interconnected workplace. The number of features in a car has also increased. As a result, the user interaction inside the car has become overcrowded and more complex. This has increased the amount of distraction while driving and has also increased the number of accidents due to distracted driving. This thesis focuses on the critical analysis of today’s in-car environment covering two main aspects, Multi Modal Interaction (MMI), and Advanced Driver Assistance Systems (ADAS), to minimize the distraction. It also provides deep market research on future trends in the smart car technology. After careful analysis, it was observed that an infotainment screen cluttered with lots of small icons, a center stack with a plethora of small buttons and a poor Voice Recognition (VR) results in high cognitive load, and these are the reasons for the increased driver distraction. Though the VR has become a standard technology, the current state of technology is focused on features oriented design and a sales driven approach. Most of the automotive manufacturers are focusing on making the VR better but attaining perfection in VR is not the answer as there are inherent challenges and limitations in respect to the in-car environment and cognitive load. Accordingly, the research proposed a novel in-car interaction design solution: Multi-Modal Interaction (MMI). The MMI is a new term when used in the context of vehicles, but it is widely used in human-human interaction. The approach offers a non-intrusive alternative to the driver to interact with the features in the car. With the focus on user-centered design, the MMI and ADAS can potentially help to reduce the distraction. To support the discussion, an experiment was conducted to benchmark a minimalist UI design. An engineering based method was used to test and measure distraction of four different UIs with varying numbers of icons and screen sizes. Lastly, in order to compete with the market, the basic features that are provided by all the other competitors cannot be eliminated, but the hard work can be done to improve the HCaI and to make driving safer.

Contributors

Agent

Created

Date Created
2015