Matching Items (123)
Filtering by

Clear all filters

151874-Thumbnail Image.png
Description
Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and

Wind measurements are fundamental inputs for the evaluation of potential energy yield and performance of wind farms. Three-dimensional scanning coherent Doppler lidar (CDL) may provide a new basis for wind farm site selection, design, and control. In this research, CDL measurements obtained from multiple wind energy developments are analyzed and a novel wind farm control approach has been modeled. The possibility of using lidar measurements to more fully characterize the wind field is discussed, specifically, terrain effects, spatial variation of winds, power density, and the effect of shear at different layers within the rotor swept area. Various vector retrieval methods have been applied to the lidar data, and results are presented on an elevated terrain-following surface at hub height. The vector retrieval estimates are compared with tower measurements, after interpolation to the appropriate level. CDL data is used to estimate the spatial power density at hub height. Since CDL can measure winds at different vertical levels, an approach for estimating wind power density over the wind turbine rotor-swept area is explored. Sample optimized layouts of wind farm using lidar data and global optimization algorithms, accounting for wake interaction effects, have been explored. An approach to evaluate spatial wind speed and direction estimates from a standard nested Coupled Ocean and Atmosphere Mesoscale Prediction System (COAMPS) model and CDL is presented. The magnitude of spatial difference between observations and simulation for wind energy assessment is researched. Diurnal effects and ramp events as estimated by CDL and COAMPS were inter-compared. Novel wind farm control based on incoming winds and direction input from CDL's is developed. Both yaw and pitch control using scanning CDL for efficient wind farm control is analyzed. The wind farm control optimizes power production and reduces loads on wind turbines for various lidar wind speed and direction inputs, accounting for wind farm wake losses and wind speed evolution. Several wind farm control configurations were developed, for enhanced integrability into the electrical grid. Finally, the value proposition of CDL for a wind farm development, based on uncertainty reduction and return of investment is analyzed.
ContributorsKrishnamurthy, Raghavendra (Author) / Calhoun, Ronald J (Thesis advisor) / Chen, Kangping (Committee member) / Huang, Huei-Ping (Committee member) / Fraser, Matthew (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
152190-Thumbnail Image.png
Description
This dissertation explores vulnerability to extreme heat hazards in the Maricopa County, Arizona metropolitan region. By engaging an interdisciplinary approach, I uncover the epidemiological, historical-geographical, and mitigation dimensions of human vulnerability to extreme heat in a rapidly urbanizing region characterized by an intense urban heat island and summertime heat waves.

This dissertation explores vulnerability to extreme heat hazards in the Maricopa County, Arizona metropolitan region. By engaging an interdisciplinary approach, I uncover the epidemiological, historical-geographical, and mitigation dimensions of human vulnerability to extreme heat in a rapidly urbanizing region characterized by an intense urban heat island and summertime heat waves. I first frame the overall research within global climate change and hazards vulnerability research literature, and then present three case studies. I conclude with a synthesis of the findings and lessons learned from my interdisciplinary approach using an urban political ecology framework. In the first case study I construct and map a predictive index of sensitivity to heat health risks for neighborhoods, compare predicted neighborhood sensitivity to heat-related hospitalization rates, and estimate relative risk of hospitalizations for neighborhoods. In the second case study, I unpack the history and geography of land use/land cover change, urban development and marginalization of minorities that created the metropolitan region's urban heat island and consequently, the present conditions of extreme heat exposure and vulnerability in the urban core. The third study uses computational microclimate modeling to evaluate the potential of a vegetation-based intervention for mitigating extreme heat in an urban core neighborhood. Several findings relevant to extreme heat vulnerability emerge from the case studies. First, two main socio-demographic groups are found to be at higher risk for heat illness: low-income minorities in sparsely-vegetated neighborhoods in the urban core, and the elderly and socially-isolated in the expansive suburban fringe of Maricopa County. The second case study reveals that current conditions of heat exposure in the region's urban heat island are the legacy of historical marginalization of minorities and large-scale land-use/land cover transformations of natural desert land covers into heat-retaining urban surfaces of the built environment. Third, summertime air temperature reductions in the range 0.9-1.9 °C and of up to 8.4 °C in surface temperatures in the urban core can be achieved through desert-adapted canopied vegetation, suggesting that, at the microscale, the urban heat island can be mitigated by creating vegetated park cool islands. A synthesis of the three case studies using the urban political ecology framework argues that climate changed-induced heat hazards in cities must be problematized within the socio-ecological transformations that produce and reproduce urban landscapes of risk. The interdisciplinary approach to heat hazards in this dissertation advances understanding of the social and ecological drivers of extreme heat by drawing on multiple theories and methods from sociology, urban and Marxist geography, microclimatology, spatial epidemiology, environmental history, political economy and urban political ecology.
ContributorsDeclet-Barreto, Juan (Author) / Harlan, Sharon L (Thesis advisor) / Bolin, Bob (Thesis advisor) / Hirt, Paul (Committee member) / Boone, Christopher (Committee member) / Arizona State University (Publisher)
Created2013
151991-Thumbnail Image.png
Description
Residential historic preservation occurs through inhabitation. Through day-to-day domesticities a suite of bodily comportments and aesthetic practices are perpetually at work tearing and stitching the historic fabric anew. Such paradoxical practice materializes seemingly incompatible relations between past and present, people and things. Through a playful posture of experience/experiment, this dissertation

Residential historic preservation occurs through inhabitation. Through day-to-day domesticities a suite of bodily comportments and aesthetic practices are perpetually at work tearing and stitching the historic fabric anew. Such paradoxical practice materializes seemingly incompatible relations between past and present, people and things. Through a playful posture of experience/experiment, this dissertation attends to the materiality of historic habitation vis-à-vis practices and performances in the Coronado historic neighborhood (1907-1942) in Phoenix, Arizona. Characterized by diversity in the built and social environs, Coronado defies preservation's exclusionary tendencies. First, I propose a theoretical frame to account for the amorphous expression of nostalgia, the way it seeps, tugs, and lures `historic' people and things together. I push the argument that everyday nostalgic practice and performance in Coronado gives rise to an aesthetic of pastness that draws attention to what is near, a sensual attunement of care rather than strict adherence to preservation guidelines. Drawing on the institutional legacy of Neighborhood Housing Services, I then rethink residential historic preservation in Coronado as urban bricolage, the aesthetic ordering of urban space through practices of inclusivity, temporal juxtaposition, and the art of everyday living. Finally, I explore the historic practice of home touring in Coronado as demonstrative of urban hospitality, an opening of self and neighborhood toward other bodies, critical in the making of viable, ethical urban communities. These three moments contribute to the body of literature rethinking urbanism as sensual, enchanted, and hospitable.
ContributorsKitson, Jennifer (Author) / McHugh, Kevin (Thesis advisor) / Lukinbeal, Christopher (Committee member) / Bolin, Bob (Committee member) / Klett, Mark (Committee member) / Arizona State University (Publisher)
Created2013
151485-Thumbnail Image.png
Description
Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various

Tesla turbo-machinery offers a robust, easily manufactured, extremely versatile prime mover with inherent capabilities making it perhaps the best, if not the only, solution for certain niche applications. The goal of this thesis is not to optimize the performance of the Tesla turbine, but to compare its performance with various working fluids. Theoretical and experimental analyses of a turbine-generator assembly utilizing compressed air, saturated steam and water as the working fluids were performed and are presented in this work. A brief background and explanation of the technology is provided along with potential applications. A theoretical thermodynamic analysis is outlined, resulting in turbine and rotor efficiencies, power outputs and Reynolds numbers calculated for the turbine for various combinations of working fluids and inlet nozzles. The results indicate the turbine is capable of achieving a turbine efficiency of 31.17 ± 3.61% and an estimated rotor efficiency 95 ± 9.32%. These efficiencies are promising considering the numerous losses still present in the current design. Calculation of the Reynolds number provided some capability to determine the flow behavior and how that behavior impacts the performance and efficiency of the Tesla turbine. It was determined that turbulence in the flow is essential to achieving high power outputs and high efficiency. Although the efficiency, after peaking, begins to slightly taper off as the flow becomes increasingly turbulent, the power output maintains a steady linear increase.
ContributorsPeshlakai, Aaron (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Wang, Liping (Committee member) / Arizona State University (Publisher)
Created2012
151515-Thumbnail Image.png
Description
This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified

This thesis outlines the development of a vector retrieval technique, based on data assimilation, for a coherent Doppler LIDAR (Light Detection and Ranging). A detailed analysis of the Optimal Interpolation (OI) technique for vector retrieval is presented. Through several modifications to the OI technique, it is shown that the modified technique results in significant improvement in velocity retrieval accuracy. These modifications include changes to innovation covariance portioning, covariance binning, and analysis increment calculation. It is observed that the modified technique is able to make retrievals with better accuracy, preserves local information better, and compares well with tower measurements. In order to study the error of representativeness and vector retrieval error, a lidar simulator was constructed. Using the lidar simulator a thorough sensitivity analysis of the lidar measurement process and vector retrieval is carried out. The error of representativeness as a function of scales of motion and sensitivity of vector retrieval to look angle is quantified. Using the modified OI technique, study of nocturnal flow in Owens' Valley, CA was carried out to identify and understand uncharacteristic events on the night of March 27th 2006. Observations from 1030 UTC to 1230 UTC (0230 hr local time to 0430 hr local time) on March 27 2006 are presented. Lidar observations show complex and uncharacteristic flows such as sudden bursts of westerly cross-valley wind mixing with the dominant up-valley wind. Model results from Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS®) and other in-situ instrumentations are used to corroborate and complement these observations. The modified OI technique is used to identify uncharacteristic and extreme flow events at a wind development site. Estimates of turbulence and shear from this technique are compared to tower measurements. A formulation for equivalent wind speed in the presence of variations in wind speed and direction, combined with shear is developed and used to determine wind energy content in presence of turbulence.
ContributorsChoukulkar, Aditya (Author) / Calhoun, Ronald (Thesis advisor) / Mahalov, Alex (Committee member) / Kostelich, Eric (Committee member) / Huang, Huei-Ping (Committee member) / Phelan, Patrick (Committee member) / Arizona State University (Publisher)
Created2013
Description
This study explores the potential risks associated with the 65 U.S.-based commercial nuclear power plants (NPPs) and the distribution of those risks among the populations of both their respective host communities and of the communities located in outlying areas. First, I examine the relevant environmental justice issues. I start by

This study explores the potential risks associated with the 65 U.S.-based commercial nuclear power plants (NPPs) and the distribution of those risks among the populations of both their respective host communities and of the communities located in outlying areas. First, I examine the relevant environmental justice issues. I start by examining the racial/ethnic composition of the host community populations, as well as the disparities in socio-economic status that exist, if any, between the host communities and communities located in outlying areas. Second, I estimate the statistical associations that exist, if any, between a population's distance from a NPP and several independent variables. I conduct multivariate ordinary least square (OLS) regression analyses and spatial autocorrelation regression (SAR) analyses at the national, regional and individual-NPP levels. Third, I construct a NPP potential risk index (NPP PRI) that defines four discrete risk categories--namely, very high risk, high risk, moderate risk, and low risk. The NPP PRI allows me then to estimate the demographic characteristics of the populations exposed to each so-defined level of risk. Fourth, using the Palo Verde NPP as the subject, I simulate a scenario in which a NPP experiences a core-damage accident. I use the RASCAL 4.3 software to simulate the path of dispersion of the resultant radioactive plume, and to investigate the statistical associations that exist, if any, between the dispersed radioactive plume and the demographic characteristics of the populations located within the plume's footprint. This study utilizes distributive justice theories to understand the distribution of the potential risks associated with NPPs, many of which are unpredictable, irreversible and inescapable. I employ an approach that takes into account multiple stakeholders in order to provide avenues for all parties to express concerns, and to ensure the relevance and actionability of any resulting policy recommendations.
ContributorsKyne, Dean (Author) / Bolin, Bob (Thesis advisor) / Boone, Christopher (Committee member) / Pijawka, David (Committee member) / Arizona State University (Publisher)
Created2014
152513-Thumbnail Image.png
Description
The coastal fishing community of Barrington, Southwest Nova Scotia (SWNS), has depended on the resilience of ocean ecosystems and resource-based economic activities for centuries. But while many coastal fisheries have developed unique ways to govern their resources, global environmental and economic change presents new challenges. In this study, I examine

The coastal fishing community of Barrington, Southwest Nova Scotia (SWNS), has depended on the resilience of ocean ecosystems and resource-based economic activities for centuries. But while many coastal fisheries have developed unique ways to govern their resources, global environmental and economic change presents new challenges. In this study, I examine the multi-species fishery of Barrington. My objective was to understand what makes the fishery and its governance system robust to economic and ecological change, what makes fishing households vulnerable, and how household vulnerability and system level robustness interact. I addressed these these questions by focusing on action arenas, their contexts, interactions and outcomes. I used a combination of case comparisons, ethnography, surveys, quantitative and qualitative analysis to understand what influences action arenas in Barrington, Southwest Nova Scotia (SWNS). I found that robustness of the fishery at the system level depended on the strength of feedback between the operational level, where resource users interact with the resource, and the collective-choice level, where agents develop rules to influence fishing behavior. Weak feedback in Barrington has precipitated governance mismatches. At the household level, accounts from harvesters, buyers and experts suggested that decision-making arenas lacked procedural justice. Households preferred individual strategies to acquire access to and exploit fisheries resources. But the transferability of quota and licenses has created divisions between haves and have-nots. Those who have lost their traditional access to other species, such as cod, halibut, and haddock, have become highly dependent on lobster. Based on regressions and multi-criteria decision analysis, I found that new entrants in the lobster fishery needed to maintain high effort and catches to service their debts. But harvesters who did not enter the race for higher catches were most sensitive to low demand and low prices for lobster. This study demonstrates the importance of combining multiple methods and theoretical approaches to avoid tunnel vision in fisheries policy.
ContributorsBarnett, Allain J. D (Author) / Anderies, John M (Thesis advisor) / Abbott, Joshua K (Committee member) / Bolin, Bob (Committee member) / Eakin, Hallie (Committee member) / Arizona State University (Publisher)
Created2014
152984-Thumbnail Image.png
Description
Multi-touch tablets and smart phones are now widely used in both workplace and consumer settings. Interacting with these devices requires hand and arm movements that are potentially complex and poorly understood. Experimental studies have revealed differences in performance that could potentially be associated with injury risk. However, underlying causes for

Multi-touch tablets and smart phones are now widely used in both workplace and consumer settings. Interacting with these devices requires hand and arm movements that are potentially complex and poorly understood. Experimental studies have revealed differences in performance that could potentially be associated with injury risk. However, underlying causes for performance differences are often difficult to identify. For example, many patterns of muscle activity can potentially result in similar behavioral output. Muscle activity is one factor contributing to forces in tissues that could contribute to injury. However, experimental measurements of muscle activity and force for humans are extremely challenging. Models of the musculoskeletal system can be used to make specific estimates of neuromuscular coordination and musculoskeletal forces. However, existing models cannot easily be used to describe complex, multi-finger gestures such as those used for multi-touch human computer interaction (HCI) tasks. We therefore seek to develop a dynamic musculoskeletal simulation capable of estimating internal musculoskeletal loading during multi-touch tasks involving multi digits of the hand, and use the simulation to better understand complex multi-touch and gestural movements, and potentially guide the design of technologies the reduce injury risk. To accomplish these, we focused on three specific tasks. First, we aimed at determining the optimal index finger muscle attachment points within the context of the established, validated OpenSim arm model using measured moment arm data taken from the literature. Second, we aimed at deriving moment arm values from experimentally-measured muscle attachments and using these values to determine muscle-tendon paths for both extrinsic and intrinsic muscles of middle, ring and little fingers. Finally, we aimed at exploring differences in hand muscle activation patterns during zooming and rotating tasks on the tablet computer in twelve subjects. Towards this end, our musculoskeletal hand model will help better address the neuromuscular coordination, safe gesture performance and internal loadings for multi-touch applications.
ContributorsYi, Chong-hwan (Author) / Jindrich, Devin L. (Thesis advisor) / Artemiadis, Panagiotis K. (Thesis advisor) / Phelan, Patrick (Committee member) / Santos, Veronica J. (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2014
153086-Thumbnail Image.png
Description
A municipal electric utility in Mesa, Arizona with a peak load of approximately 85 megawatts (MW) was analyzed to determine how the implementation of renewable resources (both wind and solar) would affect the overall cost of energy purchased by the utility. The utility currently purchases all of its energy

A municipal electric utility in Mesa, Arizona with a peak load of approximately 85 megawatts (MW) was analyzed to determine how the implementation of renewable resources (both wind and solar) would affect the overall cost of energy purchased by the utility. The utility currently purchases all of its energy through long term energy supply contracts and does not own any generation assets and so optimization was achieved by minimizing the overall cost of energy while adhering to specific constraints on how much energy the utility could purchase from the short term energy market. Scenarios were analyzed for a five percent and a ten percent penetration of renewable energy in the years 2015 and 2025. Demand Side Management measures (through thermal storage in the City's district cooling system, electric vehicles, and customers' air conditioning improvements) were evaluated to determine if they would mitigate some of the cost increases that resulted from the addition of renewable resources.

In the 2015 simulation, wind energy was less expensive than solar to integrate to the supply mix. When five percent of the utility's energy requirements in 2015 are met by wind, this caused a 3.59% increase in the overall cost of energy. When that five percent is met by solar in 2015, it is estimated to cause a 3.62% increase in the overall cost of energy. A mix of wind and solar in 2015 caused a lower increase in the overall cost of energy of 3.57%. At the ten percent implementation level in 2015, solar, wind, and a mix of solar and wind caused increases of 7.28%, 7.51% and 7.27% respectively in the overall cost of energy.

In 2025, at the five percent implementation level, wind and solar caused increases in the overall cost of energy of 3.07% and 2.22% respectively. In 2025, at the ten percent implementation level, wind and solar caused increases in the overall cost of energy of 6.23% and 4.67% respectively.

Demand Side Management reduced the overall cost of energy by approximately 0.6%, mitigating some of the cost increase from adding renewable resources.
ContributorsCadorin, Anthony (Author) / Phelan, Patrick (Thesis advisor) / Calhoun, Ronald (Committee member) / Trimble, Steve (Committee member) / Arizona State University (Publisher)
Created2014
153131-Thumbnail Image.png
Description
Low-income communities of color in the U.S. today are often vulnerable to displacement, forced relocation away from the places they call home. Displacement takes many forms, including immigration enforcement, mass incarceration, gentrification, and unwanted development. This dissertation juxtaposes two different examples of displacement, emphasizing similarities in lived experiences. Mixed methods

Low-income communities of color in the U.S. today are often vulnerable to displacement, forced relocation away from the places they call home. Displacement takes many forms, including immigration enforcement, mass incarceration, gentrification, and unwanted development. This dissertation juxtaposes two different examples of displacement, emphasizing similarities in lived experiences. Mixed methods including document-based research, map-making, visual ethnography, participant observation, and interviews were used to examine two case studies in Phoenix, Arizona: (1) workplace immigration raids, which overwhelmingly target Latino migrant workers; and (2) the Loop 202 freeway, which would disproportionately impact Akimel O'odham land. Drawing on critical geography, critical ethnic studies, feminist theory, carceral studies, and decolonial theory, this research considers: the social, economic, and political causes of displacement, its impact on the cultural and social meanings of space, the everyday practices that allow people to survive economically and emotionally, and the strategies used to organize against relocation.

Although raids are often represented as momentary spectacles of danger and containment, from a worker's perspective, raids are long trajectories through multiple sites of domination. Raids' racial geographies reinforce urban segregation, while traumatization in carceral space reduces the power of Latino migrants in the workplace. Expressions of care among raided workers and others in jail and detention make carceral spaces more livable, and contribute to movement building and abolitionist sentiments outside detention.

The Loop 202 would result in a loss of native land and sovereignty, including clean air and a mountain sacred to O'odham people. While the proposal originated with corporate desire for a transnational trade corridor, it has been sustained by local industry, the perceived inevitability of development, and colonial narratives about native people and land. O'odham artists, mothers, and elders counter the freeway's colonial logics through stories that emphasize balance, collective care over individual profit, and historical consciousness.

Both raids and the freeway have been contested by local grassroots movements. Through political education, base-building, advocacy, lawsuits, and protest strategies, community organizations have achieved changes in state practice. These movements have also worked to create alternative spaces of safety and home, rooted in interpersonal care and Latino and O'odham culture.
ContributorsDiddams, Margaret (Author) / Bolin, Bob (Thesis advisor) / Fonow, Mary Margaret (Committee member) / Cheng, Wendy (Committee member) / Arizona State University (Publisher)
Created2014