Matching Items (47)
Filtering by

Clear all filters

153487-Thumbnail Image.png
Description
Internet browsers are today capable of warning internet users of a potential phishing attack. Browsers identify these websites by referring to blacklists of reported phishing websites maintained by trusted organizations like Google, Phishtank etc. On identifying a Unified Resource Locator (URL) requested by a user as a reported phishing URL,

Internet browsers are today capable of warning internet users of a potential phishing attack. Browsers identify these websites by referring to blacklists of reported phishing websites maintained by trusted organizations like Google, Phishtank etc. On identifying a Unified Resource Locator (URL) requested by a user as a reported phishing URL, browsers like Mozilla Firefox and Google Chrome display an 'active' warning message in an attempt to stop the user from making a potentially dangerous decision of visiting the website and sharing confidential information like username-password, credit card information, social security number etc.

However, these warnings are not always successful at safeguarding the user from a phishing attack. On several occasions, users ignore these warnings and 'click through' them, eventually landing at the potentially dangerous website and giving away confidential information. Failure to understand the warning, failure to differentiate different types of browser warnings, diminishing trust on browser warnings due to repeated encounter are some of the reasons that make users ignore these warnings. It is important to address these factors in order to eventually improve a user’s reaction to these warnings.

In this thesis, I propose a novel design to improve the effectiveness and reliability of phishing warning messages. This design utilizes the name of the target website that a fake website is mimicking, to display a simple, easy to understand and interactive warning message with the primary objective of keeping the user away from a potentially spoof website.
ContributorsSharma, Satyabrata (Author) / Bazzi, Rida (Thesis advisor) / Walker, Erin (Committee member) / Gaffar, Ashraf (Committee member) / Arizona State University (Publisher)
Created2015
153910-Thumbnail Image.png
Description
Despite the various driver assistance systems and electronics, the threat to life of driver, passengers and other people on the road still persists. With the growth in technology, the use of in-vehicle devices with a plethora of buttons and features is increasing resulting in increased distraction. Recently, speech recognition has

Despite the various driver assistance systems and electronics, the threat to life of driver, passengers and other people on the road still persists. With the growth in technology, the use of in-vehicle devices with a plethora of buttons and features is increasing resulting in increased distraction. Recently, speech recognition has emerged as an alternative to distraction and has the potential to be beneficial. However, considering the fact that automotive environment is dynamic and noisy in nature, distraction may not arise from the manual interaction, but due to the cognitive load. Hence, speech recognition certainly cannot be a reliable mode of communication.

The thesis is focused on proposing a simultaneous multimodal approach for designing interface between driver and vehicle with a goal to enable the driver to be more attentive to the driving tasks and spend less time fiddling with distractive tasks. By analyzing the human-human multimodal interaction techniques, new modes have been identified and experimented, especially suitable for the automotive context. The identified modes are touch, speech, graphics, voice-tip and text-tip. The multiple modes are intended to work collectively to make the interaction more intuitive and natural. In order to obtain a minimalist user-centered design for the center stack, various design principles such as 80/20 rule, contour bias, affordance, flexibility-usability trade-off etc. have been implemented on the prototypes. The prototype was developed using the Dragon software development kit on android platform for speech recognition.

In the present study, the driver behavior was investigated in an experiment conducted on the DriveSafety driving simulator DS-600s. Twelve volunteers drove the simulator under two conditions: (1) accessing the center stack applications using touch only and (2) accessing the applications using speech with offered text-tip. The duration for which user looked away from the road (eyes-off-road) was measured manually for each scenario. Comparison of results proved that eyes-off-road time is less for the second scenario. The minimalist design with 8-10 icons per screen proved to be effective as all the readings were within the driver distraction recommendations (eyes-off-road time < 2sec per screen) defined by NHTSA.
ContributorsMittal, Richa (Author) / Gaffar, Ashraf (Thesis advisor) / Femiani, John (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2015
156430-Thumbnail Image.png
Description
Machine learning models convert raw data in the form of video, images, audio,

text, etc. into feature representations that are convenient for computational process-

ing. Deep neural networks have proven to be very efficient feature extractors for a

variety of machine learning tasks. Generative models based on deep neural networks

introduce constraints on the

Machine learning models convert raw data in the form of video, images, audio,

text, etc. into feature representations that are convenient for computational process-

ing. Deep neural networks have proven to be very efficient feature extractors for a

variety of machine learning tasks. Generative models based on deep neural networks

introduce constraints on the feature space to learn transferable and disentangled rep-

resentations. Transferable feature representations help in training machine learning

models that are robust across different distributions of data. For example, with the

application of transferable features in domain adaptation, models trained on a source

distribution can be applied to a data from a target distribution even though the dis-

tributions may be different. In style transfer and image-to-image translation, disen-

tangled representations allow for the separation of style and content when translating

images.

This thesis examines learning transferable data representations in novel deep gen-

erative models. The Semi-Supervised Adversarial Translator (SAT) utilizes adversar-

ial methods and cross-domain weight sharing in a neural network to extract trans-

ferable representations. These transferable interpretations can then be decoded into

the original image or a similar image in another domain. The Explicit Disentangling

Network (EDN) utilizes generative methods to disentangle images into their core at-

tributes and then segments sets of related attributes. The EDN can separate these

attributes by controlling the ow of information using a novel combination of losses

and network architecture. This separation of attributes allows precise modi_cations

to speci_c components of the data representation, boosting the performance of ma-

chine learning tasks. The effectiveness of these models is evaluated across domain

adaptation, style transfer, and image-to-image translation tasks.
ContributorsEusebio, Jose Miguel Ang (Author) / Panchanathan, Sethuraman (Thesis advisor) / Davulcu, Hasan (Committee member) / Venkateswara, Hemanth (Committee member) / Arizona State University (Publisher)
Created2018
156971-Thumbnail Image.png
Description
Recent advancements in external memory based neural networks have shown promise

in solving tasks that require precise storage and retrieval of past information. Re-

searchers have applied these models to a wide range of tasks that have algorithmic

properties but have not applied these models to real-world robotic tasks. In this

thesis, we present

Recent advancements in external memory based neural networks have shown promise

in solving tasks that require precise storage and retrieval of past information. Re-

searchers have applied these models to a wide range of tasks that have algorithmic

properties but have not applied these models to real-world robotic tasks. In this

thesis, we present memory-augmented neural networks that synthesize robot navigation policies which a) encode long-term temporal dependencies b) make decisions in

partially observed environments and c) quantify the uncertainty inherent in the task.

We extract information about the temporal structure of a task via imitation learning

from human demonstration and evaluate the performance of the models on control

policies for a robot navigation task. Experiments are performed in partially observed

environments in both simulation and the real world
ContributorsSrivatsav, Nambi (Author) / Ben Amor, Hani (Thesis advisor) / Srivastava, Siddharth (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2018
157016-Thumbnail Image.png
Description
A critical challenge in the design of AI systems that operate with humans in the loop is to be able to model the intentions and capabilities of the humans, as well as their beliefs and expectations of the AI system itself. This allows the AI system to be "human- aware"

A critical challenge in the design of AI systems that operate with humans in the loop is to be able to model the intentions and capabilities of the humans, as well as their beliefs and expectations of the AI system itself. This allows the AI system to be "human- aware" -- i.e. the human task model enables it to envisage desired roles of the human in joint action, while the human mental model allows it to anticipate how its own actions are perceived from the point of view of the human. In my research, I explore how these concepts of human-awareness manifest themselves in the scope of planning or sequential decision making with humans in the loop. To this end, I will show (1) how the AI agent can leverage the human task model to generate symbiotic behavior; and (2) how the introduction of the human mental model in the deliberative process of the AI agent allows it to generate explanations for a plan or resort to explicable plans when explanations are not desired. The latter is in addition to traditional notions of human-aware planning which typically use the human task model alone and thus enables a new suite of capabilities of a human-aware AI agent. Finally, I will explore how the AI agent can leverage emerging mixed-reality interfaces to realize effective channels of communication with the human in the loop.
ContributorsChakraborti, Tathagata (Author) / Kambhampati, Subbarao (Thesis advisor) / Talamadupula, Kartik (Committee member) / Scheutz, Matthias (Committee member) / Ben Amor, Hani (Committee member) / Zhang, Yu (Committee member) / Arizona State University (Publisher)
Created2018
Description
Driver distraction research has a long history spanning nearly 50 years, intensifying in the last decade. The focus has always been on identifying the distractive tasks and measuring the respective harm level. As in-vehicle technology advances, the list of distractive activities grows along with crash risk. Additionally, the distractive activities

Driver distraction research has a long history spanning nearly 50 years, intensifying in the last decade. The focus has always been on identifying the distractive tasks and measuring the respective harm level. As in-vehicle technology advances, the list of distractive activities grows along with crash risk. Additionally, the distractive activities become more common and complicated, especially with regard to In-Car Interactive System. This work's main focus is on driver distraction caused by the in-car interactive System. There have been many User Interaction Designs (Buttons, Speech, Visual) for Human-Car communication, in the past and currently present. And, all related studies suggest that driver distraction level is still high and there is a need for a better design. Multimodal Interaction is a design approach, which relies on using multiple modes for humans to interact with the car & hence reducing driver distraction by allowing the driver to choose the most suitable mode with minimum distraction. Additionally, combining multiple modes simultaneously provides more natural interaction, which could lead to less distraction. The main goal of MMI is to enable the driver to be more attentive to driving tasks and spend less time fiddling with distractive tasks. Engineering based method is used to measure driver distraction. This method uses metrics like Reaction time, Acceleration, Lane Departure obtained from test cases.
ContributorsJahagirdar, Tanvi (Author) / Gaffar, Ashraf (Thesis advisor) / Ghazarian, Arbi (Committee member) / Gray, Robert (Committee member) / Arizona State University (Publisher)
Created2015
Description
Driving is already a complex task that demands a varying level of cognitive and physical load. With the advancement in technology, the car has become a place for media consumption, a communications center and an interconnected workplace. The number of features in a car has also increased. As a result,

Driving is already a complex task that demands a varying level of cognitive and physical load. With the advancement in technology, the car has become a place for media consumption, a communications center and an interconnected workplace. The number of features in a car has also increased. As a result, the user interaction inside the car has become overcrowded and more complex. This has increased the amount of distraction while driving and has also increased the number of accidents due to distracted driving. This thesis focuses on the critical analysis of today’s in-car environment covering two main aspects, Multi Modal Interaction (MMI), and Advanced Driver Assistance Systems (ADAS), to minimize the distraction. It also provides deep market research on future trends in the smart car technology. After careful analysis, it was observed that an infotainment screen cluttered with lots of small icons, a center stack with a plethora of small buttons and a poor Voice Recognition (VR) results in high cognitive load, and these are the reasons for the increased driver distraction. Though the VR has become a standard technology, the current state of technology is focused on features oriented design and a sales driven approach. Most of the automotive manufacturers are focusing on making the VR better but attaining perfection in VR is not the answer as there are inherent challenges and limitations in respect to the in-car environment and cognitive load. Accordingly, the research proposed a novel in-car interaction design solution: Multi-Modal Interaction (MMI). The MMI is a new term when used in the context of vehicles, but it is widely used in human-human interaction. The approach offers a non-intrusive alternative to the driver to interact with the features in the car. With the focus on user-centered design, the MMI and ADAS can potentially help to reduce the distraction. To support the discussion, an experiment was conducted to benchmark a minimalist UI design. An engineering based method was used to test and measure distraction of four different UIs with varying numbers of icons and screen sizes. Lastly, in order to compete with the market, the basic features that are provided by all the other competitors cannot be eliminated, but the hard work can be done to improve the HCaI and to make driving safer.
ContributorsNakrani, Paresh Keshubhai (Author) / Gaffar, Ashraf (Thesis advisor) / Sohoni, Sohum (Committee member) / Ghazarian, Arabi (Committee member) / Arizona State University (Publisher)
Created2015
154747-Thumbnail Image.png
Description
Text Classification is a rapidly evolving area of Data Mining while Requirements Engineering is a less-explored area of Software Engineering which deals the process of defining, documenting and maintaining a software system's requirements. When researchers decided to blend these two streams in, there was research on automating the process of

Text Classification is a rapidly evolving area of Data Mining while Requirements Engineering is a less-explored area of Software Engineering which deals the process of defining, documenting and maintaining a software system's requirements. When researchers decided to blend these two streams in, there was research on automating the process of classification of software requirements statements into categories easily comprehensible for developers for faster development and delivery, which till now was mostly done manually by software engineers - indeed a tedious job. However, most of the research was focused on classification of Non-functional requirements pertaining to intangible features such as security, reliability, quality and so on. It is indeed a challenging task to automatically classify functional requirements, those pertaining to how the system will function, especially those belonging to different and large enterprise systems. This requires exploitation of text mining capabilities. This thesis aims to investigate results of text classification applied on functional software requirements by creating a framework in R and making use of algorithms and techniques like k-nearest neighbors, support vector machine, and many others like boosting, bagging, maximum entropy, neural networks and random forests in an ensemble approach. The study was conducted by collecting and visualizing relevant enterprise data manually classified previously and subsequently used for training the model. Key components for training included frequency of terms in the documents and the level of cleanliness of data. The model was applied on test data and validated for analysis, by studying and comparing parameters like precision, recall and accuracy.
ContributorsSwadia, Japa (Author) / Ghazarian, Arbi (Thesis advisor) / Bansal, Srividya (Committee member) / Gaffar, Ashraf (Committee member) / Arizona State University (Publisher)
Created2016
154625-Thumbnail Image.png
Description
This reports investigates the general day to day problems faced by small businesses, particularly small vendors, in areas of marketing and general management. Due to lack of man power, internet availability and properly documented data, small business cannot optimize their business. The aim of the research is to address and

This reports investigates the general day to day problems faced by small businesses, particularly small vendors, in areas of marketing and general management. Due to lack of man power, internet availability and properly documented data, small business cannot optimize their business. The aim of the research is to address and find a solution to these problems faced, in the form of a tool which utilizes data science. The tool will have features which will aid the vendor to mine their data which they record themselves and find useful information which will benefit their businesses. Since there is lack of properly documented data, One Class Classification using Support Vector Machine (SVM) is used to build a classifying model that can return positive values for audience that is likely to respond to a marketing strategy. Market basket analysis is used to choose products from the inventory in a way that patterns are found amongst them and therefore there is a higher chance of a marketing strategy to attract audience. Also, higher selling products can be used to the vendors' advantage and lesser selling products can be paired with them to have an overall profit to the business. The tool, as envisioned, meets all the requirements that it was set out to have and can be used as a stand alone application to bring the power of data mining into the hands of a small vendor.
ContributorsSharma, Aveesha (Author) / Ghazarian, Arbi (Thesis advisor) / Gaffar, Ashraf (Committee member) / Bansal, Srividya (Committee member) / Arizona State University (Publisher)
Created2016
154694-Thumbnail Image.png
Description
Despite incremental improvements over decades, academic planning solutions see relatively little use in many industrial domains despite the relevance of planning paradigms to those problems. This work observes four shortfalls of existing academic solutions which contribute to this lack of adoption.

To address these shortfalls this work defines model-independent semantics for

Despite incremental improvements over decades, academic planning solutions see relatively little use in many industrial domains despite the relevance of planning paradigms to those problems. This work observes four shortfalls of existing academic solutions which contribute to this lack of adoption.

To address these shortfalls this work defines model-independent semantics for planning and introduces an extensible planning library. This library is shown to produce feasible results on an existing benchmark domain, overcome the usual modeling limitations of traditional planners, and accommodate domain-dependent knowledge about the problem structure within the planning process.
ContributorsJonas, Michael (Author) / Gaffar, Ashraf (Thesis advisor) / Fainekos, Georgios (Committee member) / Doupe, Adam (Committee member) / Herley, Cormac (Committee member) / Arizona State University (Publisher)
Created2016