Matching Items (129)
Filtering by

Clear all filters

157614-Thumbnail Image.png
Description
Reliable and secure operation of bulk power transmission system components is an important aspect of electric power engineering. Component failures in a transmission network can lead to serious consequences and impact system reliability. The operational health of the transmission assets plays a crucial role in determining the reliability of an

Reliable and secure operation of bulk power transmission system components is an important aspect of electric power engineering. Component failures in a transmission network can lead to serious consequences and impact system reliability. The operational health of the transmission assets plays a crucial role in determining the reliability of an electric grid. To achieve this goal, scheduled maintenance of bulk power system components is an important activity to secure the transmission system against unanticipated events. This thesis identifies critical transmission elements in a 500 kV transmission network utilizing a ranking strategy.

The impact of the failure of transmission assets operated by a major utility company in the Southwest United States on its power system network is studied. A methodology is used to quantify the impact and subsequently rank transmission assets in decreasing order of their criticality. The analysis is carried out on the power system network using a node breaker model and steady state analysis. The light load case of spring 2019, peak load case of summer 2023 and two intermediate load cases have been considered for the ranking. The contingency simulations and power flow studies have been carried out using a commercial power flow study software package, Positive Sequence Load Flow (PSLF). The results obtained from PSLF are analyzed using Matlab to obtain the desired ranking. The ranked list of transmission assets will enable asset managers to identify the assets that have the most significant impact on the overall power system network performance. Therefore, investment and maintenance decisions can be made effectively. A conclusion along with a recommendation for future work is also provided in the thesis.
ContributorsBhandari, Harsh Nandlal (Author) / Vittal, Vijay (Thesis advisor) / Heydt, Gerald T (Thesis advisor) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2019
161459-Thumbnail Image.png
Description
This paper introduces an application space of Power over Ethernet to Universal Serial Bus (USB) Power Delivery, and develops 3 different flyback approaches to a 45 Watt solution in the space. The designs of Fixed Frequency Flyback, Quasi-Resonant Flyback, and Active Clamp Flyback are developed for the application with 37

This paper introduces an application space of Power over Ethernet to Universal Serial Bus (USB) Power Delivery, and develops 3 different flyback approaches to a 45 Watt solution in the space. The designs of Fixed Frequency Flyback, Quasi-Resonant Flyback, and Active Clamp Flyback are developed for the application with 37 Volts (V) to 57 V Direct Current (DC) input voltage and 5 V, 9 V, 15 V, and 20 V output, and results are examined for the given specifications. Implementation based concerns are addressed for each topology during the design process. The systems are proven and tested for efficiency, thermals, and output voltage ripple across the operation range. The topologies are then compared for a cost and benefit analysis and their highlights are identified to showcase each systems prowess.
ContributorsNasir, Anthony Michael (Author) / Ayyanar, Raja (Thesis advisor) / Lei, Qin (Committee member) / Hari, Ajay (Committee member) / Arizona State University (Publisher)
Created2021
161415-Thumbnail Image.png
Description
The broad deployment of time-synchronized continuous point-on-wave (CPoW) modules will enable electric power utilities to gain unprecedented insight into the behavior of their power system assets, loads, and distributed renewable generation in real time. By increasing the available level of detail visible to operators, serious fault events such as wildfire-inducing

The broad deployment of time-synchronized continuous point-on-wave (CPoW) modules will enable electric power utilities to gain unprecedented insight into the behavior of their power system assets, loads, and distributed renewable generation in real time. By increasing the available level of detail visible to operators, serious fault events such as wildfire-inducing arc flashes, safety-jeopardizing transformer failures, and equipment-damaging power quality decline can be mitigated in a data-driven, systematic manner. In this research project, a time-synchronized micro-scale CPoW module was designed, constructed, and characterized. This inductively powered CPoW module, which operates wirelessly by using the current flowing through a typical distribution conductor as its power source and a wireless data link for communication, has been configured to measure instantaneous line current at high frequency (nominally 3,000 samples per second) with 12-bit resolution. The design process for this module is detailed in this study, including background research, individual block design and testing, printed circuit board (PCB) design, and final characterization of the system. To validate the performance of this module, tests of power requirements, measurement accuracy, battery life, susceptibility to electromagnetic interference, and fault detection performance were performed. The results indicate that the design under investigation will satisfy the technical and physical constraints required for bulk deployment in an actual distribution network after manufacturing optimizations. After the test results were summarized, the future research and development activities needed to finalize this design for commercial deployment were identified and discussed.
ContributorsPatterson, John (Author) / Pal, Anamitra (Thesis advisor) / Ogras, Umit (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2021
161839-Thumbnail Image.png
Description
The power-flow problem has been solved using the Newton-Raphson and Gauss-Seidel methods. Recently the holomorphic embedding method (HEM), a recursive (non-iterative) method applied to solving nonlinear algebraic systems, was applied to the power-flow problem. HEM has been claimed to have superior properties when compared to the Newton-Raphson and other iterative

The power-flow problem has been solved using the Newton-Raphson and Gauss-Seidel methods. Recently the holomorphic embedding method (HEM), a recursive (non-iterative) method applied to solving nonlinear algebraic systems, was applied to the power-flow problem. HEM has been claimed to have superior properties when compared to the Newton-Raphson and other iterative methods in the sense that if the power-flow solution exists, it is guaranteed that a properly configured HEM can find the high voltage solution and, if no solution exists, HEM will signal that unequivocally. Provided a solution exists, convergence of HEM in the extremal domain is claimed to be theoretically guaranteed by Stahl’s convergence-in-capacity theorem, another advantage over other iterative nonlinear solver.In this work it is shown that the poles and zeros of the rational function from fitting the local PMU measurements can be used theoretically to predict the voltage-collapse point. Different numerical methods were applied to improve prediction accuracy when measurement noise is present. It is also shown in this work that the dc optimal power flow (DCOPF) problem can be formulated as a properly embedded set of algebraic equations. Consequently, HEM may also be used to advantage on the DCOPF problem. For the systems examined, the HEM-based interior-point approach can be used to solve the DCOPF problem. While the ultimate goal of this line of research is to solve the ac OPF; tackled in this work, is a precursor and well-known problem with Padé approximants: spurious poles that are generated when calculating the Padé approximant may, at times, prevent convergence within the functions domain. A new method for calculating the Padé approximant, called the Padé Matrix Pencil Method was developed to solve the spurious pole problem. The Padé Matrix Pencil Method can achieve accuracy equal to that of the so-called direct method for calculating Padé approximants of the voltage-functions tested while both using a reduced order approximant and eliminating any spurious poles within the portion of the function’s domain of interest: the real axis of the complex plane up to the saddle-node bifurcation point.
ContributorsLi, Songyan (Author) / Tylavsky, Daniel (Thesis advisor) / Ayyanar, Raja (Committee member) / Weng, Yang (Committee member) / Wu, Meng (Committee member) / Arizona State University (Publisher)
Created2021
161658-Thumbnail Image.png
Description
Nowadays, the widespread use of distributed generators (DGs) raises significant challenges for the design, planning, and operation of power systems. To avoid the harm caused by excessive DGs, evaluating the reliability and sustainability of the system with high penetration of DGs is essential. The concept of hosting capacity (HC) is

Nowadays, the widespread use of distributed generators (DGs) raises significant challenges for the design, planning, and operation of power systems. To avoid the harm caused by excessive DGs, evaluating the reliability and sustainability of the system with high penetration of DGs is essential. The concept of hosting capacity (HC) is used to achieve this purpose. It is to assess the capability of a distribution grid to accommodate DGs without causing damage or updating facilities. To obtain the HC value, traditional HC analysis methods face many problems, including the computational difficulties caused by the large-scale simulations and calculations, lacking the considering temporal correlation from data to data, and the inefficient on real-time analysis. This paper proposes a machine learning-based method, the Spatial-Temporal Long Short-Term Memory (ST-LSTM), to overcome these drawbacks using the traditional HC analysis method. This method will significantly reduce the requirement of calculations and simulations, and obtain HC results in real-time. Using the time-series load profiles and the longest path method, ST-LSTMs can capture the temporal information and spatial information respectively. Moreover, compared with the basic Long Short-Term Memory (LSTM) model, this modified model will improve the performance in the HC analysis by some specific designs, which are the sensitivity gate to consider voltage sensitivity information, the dual forget gates to build spatial and temporal correlation.
ContributorsWu, Jiaqi (Author) / Weng, Yang (Thesis advisor) / Ayyanar, Raja (Committee member) / Cook, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2021
153884-Thumbnail Image.png
Description
This research primarily deals with the design and validation of the protection system for a large scale meshed distribution system. The large scale system simulation (LSSS) is a system level PSCAD model which is used to validate component models for different time-scale platforms, to provide a virtual testing platform for

This research primarily deals with the design and validation of the protection system for a large scale meshed distribution system. The large scale system simulation (LSSS) is a system level PSCAD model which is used to validate component models for different time-scale platforms, to provide a virtual testing platform for the Future Renewable Electric Energy Delivery and Management (FREEDM) system. It is also used to validate the cases of power system protection, renewable energy integration and storage, and load profiles. The protection of the FREEDM system against any abnormal condition is one of the important tasks. The addition of distributed generation and power electronic based solid state transformer adds to the complexity of the protection. The FREEDM loop system has a fault current limiter and in addition, the Solid State Transformer (SST) limits the fault current at 2.0 per unit. Former students at ASU have developed the protection scheme using fiber-optic cable. However, during the NSF-FREEDM site visit, the National Science Foundation (NSF) team regarded the system incompatible for the long distances. Hence, a new protection scheme with a wireless scheme is presented in this thesis. The use of wireless communication is extended to protect the large scale meshed distributed generation from any fault. The trip signal generated by the pilot protection system is used to trigger the FID (fault isolation device) which is an electronic circuit breaker operation (switched off/opening the FIDs). The trip signal must be received and accepted by the SST, and it must block the SST operation immediately. A comprehensive protection system for the large scale meshed distribution system has been developed in PSCAD with the ability to quickly detect the faults. The validation of the protection system is performed by building a hardware model using commercial relays at the ASU power laboratory.
ContributorsSharma, Nitish (Author) / Karady, George G. (Thesis advisor) / Holbert, Keith E. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2015
153925-Thumbnail Image.png
Description
This thesis provides a cost to benefit analysis of the proposed next generation of distribution systems- the Future Renewable Electric Energy Distribution Management (FREEDM) system. With the increasing penetration of renewable energy sources onto the grid, it becomes necessary to have an infrastructure that allows for easy integration of these

This thesis provides a cost to benefit analysis of the proposed next generation of distribution systems- the Future Renewable Electric Energy Distribution Management (FREEDM) system. With the increasing penetration of renewable energy sources onto the grid, it becomes necessary to have an infrastructure that allows for easy integration of these resources coupled with features like enhanced reliability of the system and fast pro-tection from faults. The Solid State Transformer (SST) and the Fault Isolation Device (FID) make for the core of the FREEDM system and have huge investment costs.

Some key features of the FREEDM system include improved power flow control, compact design and unity power factor operation. Customers may observe a reduction in the electricity bill by a certain fraction for using renewable sources of generation. There is also a possibility of huge subsidies given to encourage use of renewable energy. This thesis is an attempt to quantify the benefits offered by the FREEDM system in monetary terms and to calculate the time in years required to gain a return on investments made. The elevated cost of FIDs needs to be justified by the advantages they offer. The result of different rates of interest and how they influence the payback period is also studied. The payback periods calculated are observed for viability. A comparison is made between the active power losses on a certain distribution feeder that makes use of distribution level magnetic transformers versus one that makes use of SSTs. The reduction in the annual active power losses in the case of the feeder using SSTs is translated onto annual savings in terms of cost when compared to the conventional case with magnetic transformers. Since the FREEDM system encourages operation at unity power factor, the need for installing capacitor banks for improving the power factor is eliminated and this re-flects in savings in terms of cost. The FREEDM system offers enhanced reliability when compared to a conventional system. The payback periods observed support the concept of introducing the FREEDM system.
ContributorsRaman, Apurva (Author) / Heydt, Gerald (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2015
153072-Thumbnail Image.png
Description
The development of new policies favoring integration of renewable energy into the grid has created a need to relook at our existing infrastructure resources and at the way the power system is currently operated. Also, the needs of electric energy markets and transmission/generation expansion planning has created a niche for

The development of new policies favoring integration of renewable energy into the grid has created a need to relook at our existing infrastructure resources and at the way the power system is currently operated. Also, the needs of electric energy markets and transmission/generation expansion planning has created a niche for development of new computationally efficient and yet reliable, simple and robust power flow tools for such studies. The so called dc power flow algorithm is an important power flow tool currently in use. However, the accuracy and performance of dc power flow results is highly variable due to the various formulations which are in use. This has thus intensified the interest of researchers in coming up with better equivalent dc models that can closely match the performance of ac power flow solution.

This thesis involves the development of novel hot start dc model using a power transfer distribution factors (PTDFs) approach. This document also discusses the problems of ill-conditioning / rank deficiency encountered while deriving this model. This model is then compared to several dc power flow models using the IEEE 118-bus system and ERCOT interconnection both as the base case ac solution and during single-line outage contingency analysis. The proposed model matches the base case ac solution better than contemporary dc power flow models used in the industry.
ContributorsSood, Puneet (Author) / Tylavsky, Daniel J (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2014
168604-Thumbnail Image.png
Description
Voltage Source Converters (VSCs) have been widely used in grid-connected applications with Distributed Energy Resource (DER) and Electric Vehicle (EV) applications. Replacement of traditional thyristors with Silicon/Silicon-Carbide based active switches provides full control capability to the converters and allows bidirectional power flow between the source and active loads. In this

Voltage Source Converters (VSCs) have been widely used in grid-connected applications with Distributed Energy Resource (DER) and Electric Vehicle (EV) applications. Replacement of traditional thyristors with Silicon/Silicon-Carbide based active switches provides full control capability to the converters and allows bidirectional power flow between the source and active loads. In this study, advanced control strategies for DER inverters and EV traction inverters will be explored.Chapter 1 gives a brief introduction to State-of-the-Art of VSC control strategies and summarizes the existing challenges in different applications. Chapter 2 presents multiple advanced control strategies of grid-connected DER inverters. Various grid support functions have been implemented in simulations and hardware experiments under both normal and abnormal operating conditions. Chapter 3 proposes an automated design and optimization process of a robust H-infinity controller to address the stability issue of grid-connected inverters caused by grid impedance variation. The principle of the controller synthesis is to select appropriate weighting functions to shape the systems closed-loop transfer function and to achieve robust stability and robust performance. An optimal controller will be selected by using a 2-Dimensional Pareto Front. Chapter 4 proposes a high-performance 4-layer communication architecture to facilitate the control of a large distribution network with high Photovoltaic (PV) penetration. Multiple strategies have been implemented to address the challenges of coordination between communication and system control and between different communication protocols, which leads to a boost in the communication efficiency and makes the architecture highly scalable, adaptive, and robust. Chapter 5 presents the control strategies of a traditional Modular Multilevel Converter (MMC) and a novel Modular Isolated Multilevel Converter (MIMC) in grid-connected and variable speed drive applications. The proposed MIMC is able to achieve great size reduction for the submodule capacitors since the fundamental and double-line frequency voltage ripple has been cancelled. Chapter 6 shows a detailed hardware and controller design for a 48 V Belt-driven Starter Generator (BSG) inverter using automotive gate driver ICs and microcontroller. The inverter prototype has reached a power density of 333 W/inch3, up to 200 A phase current and 600 Hz output frequency.
ContributorsSi, Yunpeng (Author) / Lei, Qin (Thesis advisor) / Ayyanar, Raja (Committee member) / Vittal, Vijay (Committee member) / Zhang, Junshan (Committee member) / Arizona State University (Publisher)
Created2022