Matching Items (4)
Filtering by

Clear all filters

Description
The world’s population is currently 9% visually impaired. Medical sciences do not have a biological fix that can cure this visual impairment. Visually impaired people are currently being assisted with biological fixes or assistive devices. The current assistive devices are limited in size as well as resolution. This thesis presents

The world’s population is currently 9% visually impaired. Medical sciences do not have a biological fix that can cure this visual impairment. Visually impaired people are currently being assisted with biological fixes or assistive devices. The current assistive devices are limited in size as well as resolution. This thesis presents the development and experimental validation of a control system for a new vibrotactile haptic display that is currently in development. In order to allow the vibrotactile haptic display to be used to represent motion, the control system must be able to change the image displayed at a rate of at least 30 frames/second. In order to achieve this, this thesis introduces and investigates the use of three improvements: threading, change filtering, and wave libraries. Through these methods, it is determined that an average of 40 frames/second can be achieved.
ContributorsKIM, KENDRA (Author) / Sodemann, Angela (Thesis advisor) / Robertson, John (Committee member) / Bansal, Ajay (Committee member) / Arizona State University (Publisher)
Created2018
155687-Thumbnail Image.png
Description
Semiconductor manufacturing is one of the most complex manufacturing systems in today’s times. Since semiconductor industry is extremely consumer driven, market demands within this industry change rapidly. It is therefore very crucial for these industries to be able to predict cycle time very accurately in order to quote accurate delivery

Semiconductor manufacturing is one of the most complex manufacturing systems in today’s times. Since semiconductor industry is extremely consumer driven, market demands within this industry change rapidly. It is therefore very crucial for these industries to be able to predict cycle time very accurately in order to quote accurate delivery dates. Discrete Event Simulation (DES) models are often used to model these complex manufacturing systems in order to generate estimates of the cycle time distribution. However, building models and executing them consumes sufficient time and resources. The objective of this research is to determine the influence of input parameters on the cycle time distribution of a semiconductor or high volume electronics manufacturing system. This will help the decision makers to implement system changes to improve the predictability of their cycle time distribution without having to run simulation models. In order to understand how input parameters impact the cycle time, Design of Experiments (DOE) is performed. The response variables considered are the attributes of cycle time distribution which include the four moments and percentiles. The input to this DOE is the output from the simulation runs. Main effects, two-way and three-way interactions for these input variables are analyzed. The implications of these results to real world scenarios are explained which would help manufactures understand the effects of the interactions between the input factors on the estimates of cycle time distribution. The shape of the cycle time distributions is different for different types of systems. Also, DES requires substantial resources and time to run. In an effort to generalize the results obtained in semiconductor manufacturing analysis, a non- complex system is considered.
ContributorsSalvi, Tanushree Ashutosh (Author) / Bekki, Jennifer M (Thesis advisor) / Sodemann, Angela (Thesis advisor) / Shuaib, Abdelrahman (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2017
155715-Thumbnail Image.png
Description
Today, in a world of automation, the impact of Artificial Intelligence can be seen in every aspect of our lives. Starting from smart homes to self-driving cars everything is run using intelligent, adaptive technologies. In this thesis, an attempt is made to analyze the correlation between driving quality and its

Today, in a world of automation, the impact of Artificial Intelligence can be seen in every aspect of our lives. Starting from smart homes to self-driving cars everything is run using intelligent, adaptive technologies. In this thesis, an attempt is made to analyze the correlation between driving quality and its impact on the use of car infotainment system and vice versa and hence the driver distraction. Various internal and external driving factors have been identified to understand the dependency and seriousness of driver distraction caused due to the car infotainment system. We have seen a number UI/UX changes, speech recognition advancements in cars to reduce distraction. But reducing the number of casualties on road is still a persisting problem in hand as the cognitive load on the driver is considered to be one of the primary reasons for distractions leading to casualties. In this research, a pathway has been provided to move towards building an artificially intelligent, adaptive and interactive infotainment which is trained to behave differently by analyzing the driving quality without the intervention of the driver. The aim is to not only shift focus of the driver from screen to street view, but to also change the inherent behavior of the infotainment system based on the driving statistics at that point in time without the need for driver intervention.
ContributorsSuresh, Seema (Author) / Gaffar, Ashraf (Thesis advisor) / Sodemann, Angela (Committee member) / Gonzalez-Sanchez, Javier (Committee member) / Arizona State University (Publisher)
Created2017
Description
With the growing popularity of 3d printing in recreational, research, and commercial enterprises new techniques and processes are being developed to improve the quality of parts created. Even so, the anisotropic properties is still a major hindrance of parts manufactured in this method. The goal is to produce parts that

With the growing popularity of 3d printing in recreational, research, and commercial enterprises new techniques and processes are being developed to improve the quality of parts created. Even so, the anisotropic properties is still a major hindrance of parts manufactured in this method. The goal is to produce parts that mimic the strength characteristics of a comparable part of the same design and materials created using injection molding. In achieving this goal the production cost can be reduced by eliminating the initial investment needed for the creation of expensive tooling. This initial investment reduction will allow for a wider variant of products in smaller batch runs to be made available. This thesis implements the use of ultraviolet (UV) illumination for an in-process laser local pre-deposition heating (LLPH). By comparing samples with and without the LLPH process it is determined that applied energy that is absorbed by the polymer is converted to an increase in the interlayer temperature, and resulting in an observed increase in tensile strength over the baseline test samples. The increase in interlayer bonding thus can be considered the dominating factor over polymer degradation.
ContributorsKusel, Scott Daniel (Author) / Hsu, Keng (Thesis advisor) / Sodemann, Angela (Committee member) / Kannan, Arunachala M (Committee member) / Arizona State University (Publisher)
Created2017