Matching Items (2)
Filtering by

Clear all filters

156822-Thumbnail Image.png
Description
Hardware implementation of deep neural networks is earning significant importance nowadays. Deep neural networks are mathematical models that use learning algorithms inspired by the brain. Numerous deep learning algorithms such as multi-layer perceptrons (MLP) have demonstrated human-level recognition accuracy in image and speech classification tasks. Multiple layers of processing elements

Hardware implementation of deep neural networks is earning significant importance nowadays. Deep neural networks are mathematical models that use learning algorithms inspired by the brain. Numerous deep learning algorithms such as multi-layer perceptrons (MLP) have demonstrated human-level recognition accuracy in image and speech classification tasks. Multiple layers of processing elements called neurons with several connections between them called synapses are used to build these networks. Hence, it involves operations that exhibit a high level of parallelism making it computationally and memory intensive. Constrained by computing resources and memory, most of the applications require a neural network which utilizes less energy. Energy efficient implementation of these computationally intense algorithms on neuromorphic hardware demands a lot of architectural optimizations. One of these optimizations would be the reduction in the network size using compression and several studies investigated compression by introducing element-wise or row-/column-/block-wise sparsity via pruning and regularization. Additionally, numerous recent works have concentrated on reducing the precision of activations and weights with some reducing to a single bit. However, combining various sparsity structures with binarized or very-low-precision (2-3 bit) neural networks have not been comprehensively explored. Output activations in these deep neural network algorithms are habitually non-binary making it difficult to exploit sparsity. On the other hand, biologically realistic models like spiking neural networks (SNN) closely mimic the operations in biological nervous systems and explore new avenues for brain-like cognitive computing. These networks deal with binary spikes, and they can exploit the input-dependent sparsity or redundancy to dynamically scale the amount of computation in turn leading to energy-efficient hardware implementation. This work discusses configurable spiking neuromorphic architecture that supports multiple hidden layers exploiting hardware reuse. It also presents design techniques for minimum-area/-energy DNN hardware with minimal degradation in accuracy. Area, performance and energy results of these DNN and SNN hardware is reported for the MNIST dataset. The Neuromorphic hardware designed for SNN algorithm in 28nm CMOS demonstrates high classification accuracy (>98% on MNIST) and low energy (51.4 - 773 (nJ) per classification). The optimized DNN hardware designed in 40nm CMOS that combines 8X structured compression and 3-bit weight precision showed 98.4% accuracy at 33 (nJ) per classification.
ContributorsKolala Venkataramanaiah, Shreyas (Author) / Seo, Jae-Sun (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Cao, Yu (Committee member) / Arizona State University (Publisher)
Created2018
171744-Thumbnail Image.png
Description
Convolutional neural networks(CNNs) achieve high accuracy on large datasets but requires significant computation and storage requirement for training/testing. While many applications demand low latency and energy-efficient processing of the images, deploying these complex algorithms on the hardware is a challenging task. This dissertation first presents a compiler-based CNN training accelerator

Convolutional neural networks(CNNs) achieve high accuracy on large datasets but requires significant computation and storage requirement for training/testing. While many applications demand low latency and energy-efficient processing of the images, deploying these complex algorithms on the hardware is a challenging task. This dissertation first presents a compiler-based CNN training accelerator using DDR3 and HBM2 memory. An optimized RTL library is implemented to perform training-specific tasks and an RTL compiler is developed to generate FPGA-synthesizable RTL based on user-defined constraints. High Bandwidth Memory(HBM) provides efficient off-chip communication and improves the training performance. The impact of HBM2 on CNN training workloads is analyzed and compressively compared with DDR3. For training ResNet-20/VGG-like CNNs for the CIFAR-10 dataset, the proposed CNN training accelerator on Stratix-10 GX FPGA(DDR3) demonstrates 479 GOPS performance, and on Stratix-10 MX FPGA(HBM) shows 4.5/9.7 X energy-efficiency improvement compared to Tesla V100 GPU. Next, the FPGA online learning accelerator is presented. Adopting model segmentation techniques from Progressive Segmented Training(PST), the online learning accelerator achieved a 4.2X reduction in training latency. Furthermore, this dissertation presents an 8-bit floating-point (FP8) training processor which implements (1) Highly parallel tensor cores that maintain high PE utilization, (2) Hardware-efficient channel gating for dynamic output activation sparsity (3) Dynamic weight sparsity based on group Lasso (4) Gradient skipping based on FP prediction error. The 28nm prototype chip demonstrates significant improvements in FLOPs reduction (7.3×), energy efficiency (16.4 TFLOPS/W), and overall training latency speedup (4.7×) for both supervised training and self-supervised training tasks. In addition to the training accelerators, this dissertation also presents a CNN inference accelerator on ASIC(FixyNN) and FPGA(FixyFPGA). FixyNN consists of a fixed-weight feature extractor that generates ubiquitous CNN features and a conventional programmable CNN accelerator. In the fixed-weight feature extractor, the network weights are hard-coded into hardware and used as a fixed operand for the multiplication. Experimental results demonstrate FixyNN can achieve very high energy efficiencies up to 26.6 TOPS/W, and FixyFPGA achieves $2.34\times$ higher GOPS on ImageNet classification. In summary, this dissertation comprehensively discusses novel architectures of high-performance and energy-efficient ASIC/FPGA CNN inference/training accelerators.
ContributorsKolala Venkataramaniah, Shreyas (Author) / Seo, Jae-Sun (Thesis advisor) / Cao, Yu (Committee member) / Chakrabarti, Chaitali (Committee member) / Fan, Deliang (Committee member) / Arizona State University (Publisher)
Created2022