Matching Items (3)
Filtering by

Clear all filters

152924-Thumbnail Image.png
Description
Modern day deep sub-micron SOC architectures often demand very low supply noise levels. As supply voltage decreases with decreasing deep sub-micron gate length, noise on the power supply starts playing a dominant role in noise-sensitive analog blocks, especially high precision ADC, PLL, and RF SOC's. Most handheld and portable applications

Modern day deep sub-micron SOC architectures often demand very low supply noise levels. As supply voltage decreases with decreasing deep sub-micron gate length, noise on the power supply starts playing a dominant role in noise-sensitive analog blocks, especially high precision ADC, PLL, and RF SOC's. Most handheld and portable applications and highly sensitive medical instrumentation circuits tend to use low noise regulators as on-chip or on board power supply. Nonlinearities associated with LNA's, mixers and oscillators up-convert low frequency noise with the signal band. Specifically, synthesizer and TCXO phase noise, LNA and mixer noise figure, and adjacent channel power ratios of the PA are heavily influenced by the supply noise and ripple. This poses a stringent requirement on a very low noise power supply with high accuracy and fast transient response. Low Dropout (LDO) regulators are preferred over switching regulators for these applications due to their attractive low noise and low ripple features. LDO's shield sensitive blocks from high frequency fluctuations on the power supply while providing high accuracy, fast response supply regulation.

This research focuses on developing innovative techniques to reduce the noise of any generic wideband LDO, stable with or without load capacitor. The proposed techniques include Switched RC Filtering to reduce the Bandgap Reference noise, Current Mode Chopping to reduce the Error Amplifier noise & MOS-R based RC filter to reduce the noise due to bias current. The residual chopping ripple was reduced using a Switched Capacitor notch filter. Using these techniques, the integrated noise of a wideband LDO was brought down to 15µV in the integration band of 10Hz to 100kHz. These techniques can be integrated into any generic LDO without any significant area overhead.
ContributorsMagod Ramakrishna, Raveesh (Author) / Bakkaloglu, Bertan (Thesis advisor) / Garrity, Douglas (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2014
156074-Thumbnail Image.png
Description
The growing demand for high performance and power hungry portable electronic devices has resulted in alarmingly serious thermal concerns in recent times. The power management system of such devices has thus become increasingly more vital. An integral component of this system is a Low-Dropout Regulator (LDO) which inherently generates a

The growing demand for high performance and power hungry portable electronic devices has resulted in alarmingly serious thermal concerns in recent times. The power management system of such devices has thus become increasingly more vital. An integral component of this system is a Low-Dropout Regulator (LDO) which inherently generates a low-noise power supply. Such power supplies are crucial for noise sensitive analog blocks like analog-to-digital converters, phase locked loops, radio-frequency circuits, etc. At higher output power however, a single LDO suffers from increased heat dissipation leading to thermal issues.

This research presents a novel approach to equally and accurately share a large output load current across multiple parallel LDOs to spread the dissipated heat uniformly. The proposed techniques to achieve a high load sharing accuracy of 1% include an innovative fully-integrated accurate current sensing technique based on Dynamic Element Matching and an integrator based servo loop with a low offset feedback amplifier. A novel compensation scheme based on a switched capacitor resistor is referenced to address the high 2A output current specification per LDO across an output voltage range of 1V to 3V. The presented scheme also reduces stringent requirements on off-chip board traces and number of off-chip components thereby making it suitable for portable hand-held systems. The proposed approach can theoretically be extended to any number of parallel LDOs increasing the output current range extensively. The designed load sharing LDO features fast transient response for a low quiescent current consumption of 300µA with a power-supply rejection of 60.7dB at DC. The proposed load sharing technique is verified through extensive simulations for various sources and ranges of mismatch across process, voltage and temperature.
ContributorsTalele, Bhushan (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kitchen, Jennifer (Committee member) / Seo, Jae-Sun (Committee member) / Arizona State University (Publisher)
Created2017
157900-Thumbnail Image.png
Description
Readout Integrated Circuits(ROICs) are important components of infrared(IR) imag

ing systems. Performance of ROICs affect the quality of images obtained from IR

imaging systems. Contemporary infrared imaging applications demand ROICs that

can support large dynamic range, high frame rate, high output data rate, at low

cost, size and power. Some of these applications are

Readout Integrated Circuits(ROICs) are important components of infrared(IR) imag

ing systems. Performance of ROICs affect the quality of images obtained from IR

imaging systems. Contemporary infrared imaging applications demand ROICs that

can support large dynamic range, high frame rate, high output data rate, at low

cost, size and power. Some of these applications are military surveillance, remote

sensing in space and earth science missions and medical diagnosis. This work focuses

on developing a ROIC unit cell prototype for National Aeronautics and Space Ad

ministration(NASA), Jet Propulsion Laboratory’s(JPL’s) space applications. These

space applications also demand high sensitivity, longer integration times(large well

capacity), wide operating temperature range, wide input current range and immunity

to radiation events such as Single Event Latchup(SEL).

This work proposes a digital ROIC(DROIC) unit cell prototype of 30ux30u size,

to be used mainly with NASA JPL’s High Operating Temperature Barrier Infrared

Detectors(HOT BIRDs). Current state of the art DROICs achieve a dynamic range

of 16 bits using advanced 65-90nm CMOS processes which adds a lot of cost overhead.

The DROIC pixel proposed in this work uses a low cost 180nm CMOS process and

supports a dynamic range of 20 bits operating at a low frame rate of 100 frames per

second(fps), and a dynamic range of 12 bits operating at a high frame rate of 5kfps.

The total electron well capacity of this DROIC pixel is 1.27 billion electrons, enabling

integration times as long as 10ms, to achieve better dynamic range. The DROIC unit

cell uses an in-pixel 12-bit coarse ADC and an external 8-bit DAC based fine ADC.

The proposed DROIC uses layout techniques that make it immune to radiation up to

300krad(Si) of total ionizing dose(TID) and single event latch-up(SEL). It also has a

wide input current range from 10pA to 1uA and supports detectors operating from

Short-wave infrared (SWIR) to longwave infrared (LWIR) regions.
ContributorsPraveen, Subramanya Chilukuri (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kitchen, Jennifer (Committee member) / Long, Yu (Committee member) / Arizona State University (Publisher)
Created2019