Matching Items (2)
Filtering by

Clear all filters

152872-Thumbnail Image.png
Description
LTE-Advanced networks employ random access based on preambles

transmitted according to multi-channel slotted Aloha principles. The

random access is controlled through a limit W on the number of

transmission attempts and a timeout period for uniform backoff after a

collision. We model the LTE-Advanced random access system by formulating

the equilibrium condition for the ratio

LTE-Advanced networks employ random access based on preambles

transmitted according to multi-channel slotted Aloha principles. The

random access is controlled through a limit W on the number of

transmission attempts and a timeout period for uniform backoff after a

collision. We model the LTE-Advanced random access system by formulating

the equilibrium condition for the ratio of the number of requests

successful within the permitted number of transmission attempts to those

successful in one attempt. We prove that for W≤8 there is only one

equilibrium operating point and for W≥9 there are three operating

points if the request load ρ is between load boundaries ρ1

and ρ2. We analytically identify these load boundaries as well as

the corresponding system operating points. We analyze the throughput and

delay of successful requests at the operating points and validate the

analytical results through simulations. Further, we generalize the

results using a steady-state equilibrium based approach and develop

models for single-channel and multi-channel systems, incorporating the

barring probability PB. Ultimately, we identify the de-correlating

effect of parameters O, PB, and Tomax and introduce the

Poissonization effect due to the backlogged requests in a slot. We

investigate the impact of Poissonization on different traffic and

conclude this thesis.
ContributorsTyagi, Revak (Author) / Reisslein, Martin (Thesis advisor) / Tepedelenlioğlu, Cihan (Committee member) / McGarry, Michael (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2014
155896-Thumbnail Image.png
Description
As wireless communication enters smartphone era, more complicated communication technologies are being used to transmit higher data rate. Power amplifier (PA) has to work in back-off region, while this inevitably reduces battery life for cellphones. Various techniques have been reported to increase PA efficiency, such as envelope elimination and restoration

As wireless communication enters smartphone era, more complicated communication technologies are being used to transmit higher data rate. Power amplifier (PA) has to work in back-off region, while this inevitably reduces battery life for cellphones. Various techniques have been reported to increase PA efficiency, such as envelope elimination and restoration (EER) and envelope tracking (ET). However, state of the art ET supply modulators failed to address high efficiency, high slew rate, and accurate tracking concurrently.

In this dissertation, a linear-switch mode hybrid ET supply modulator utilizing adaptive biasing and gain enhanced current mirror operational transconductance amplifier (OTA) with class-AB output stage in parallel with a switching regulator is presented. In comparison to a conventional OTA design with similar quiescent current consumption, proposed approach improves positive and negative slew rate from 50 V/µs to 93.4 V/µs and -87 V/µs to -152.5 V/µs respectively, dc gain from 45 dB to 67 dB while consuming same amount of quiescent current. The proposed hybrid supply modulator achieves 83% peak efficiency, power added efficiency (PAE) of 42.3% at 26.2 dBm for a 10 MHz 7.24 dB peak-to-average power ratio (PAPR) LTE signal and improves PAE by 8% at 6 dB back off from 26.2 dBm power amplifier (PA) output power with respect to fixed supply. With a 10 MHz 7.24 dB PAPR QPSK LTE signal the ET PA system achieves adjacent channel leakage ratio (ACLR) of -37.7 dBc and error vector magnitude (EVM) of 4.5% at 26.2 dBm PA output power, while with a 10 MHz 8.15 dB PAPR 64QAM LTE signal the ET PA system achieves ACLR of -35.6 dBc and EVM of 6% at 26 dBm PA output power without digital pre-distortion (DPD). The proposed supply modulator core circuit occupies 1.1 mm2 die area, and is fabricated in a 0.18 µm CMOS technology.
ContributorsJing, Yue (Author) / Bakkaloglu, Bertan (Thesis advisor) / Kiaei, Sayfe (Committee member) / Kitchen, Jennifer (Committee member) / Song, Hongjiang (Committee member) / Arizona State University (Publisher)
Created2017