Matching Items (5)
152586-Thumbnail Image.png
Description
The computation of the fundamental mode in structural moment frames provides valuable insight into the physical response of the frame to dynamic or time-varying loads. In standard practice, it is not necessary to solve for all n mode shapes in a structural system; it is therefore practical to limit the

The computation of the fundamental mode in structural moment frames provides valuable insight into the physical response of the frame to dynamic or time-varying loads. In standard practice, it is not necessary to solve for all n mode shapes in a structural system; it is therefore practical to limit the system to some determined number of r significant mode shapes. Current building codes, such as the American Society of Civil Engineers (ASCE), require certain class of structures to obtain 90% effective mass participation as a way to estimate the accuracy of a solution for base shear motion. A parametric study was performed from the collected data obtained by the analysis of a large number of framed structures. The purpose of this study was the development of rules for the required number of r significant modes to meet the ASCE code requirements. The study was based on the implementation of an algorithm and a computer program developed in the past. The algorithm is based on Householders Transformations, QR Factorization, and Inverse Iteration and it extracts a requested s (s<< n) number of predominate mode shapes and periods. Only the first r (r < s) of these modes are accurate. To verify the accuracy of the algorithm a variety of building frames have been analyzed using the commercially available structural software (RISA 3D) as a benchmark. The salient features of the algorithm are presented briefly in this study.
ContributorsGrantham, Jonathan (Author) / Fafitis, Apostolos (Thesis advisor) / Attard, Thomas (Committee member) / Houston, Sandra (Committee member) / Hjelmstad, Keith (Committee member) / Arizona State University (Publisher)
Created2014
152870-Thumbnail Image.png
Description
t temperature (HST) and top-oil temperature (TOT) are reliable indicators of the insulation temperature. The objective of this project is to use thermal models to estimate the transformer's maximum dynamic loading capacity without violating the HST and TOT thermal limits set by the operator. In order to ensure the optimal

t temperature (HST) and top-oil temperature (TOT) are reliable indicators of the insulation temperature. The objective of this project is to use thermal models to estimate the transformer's maximum dynamic loading capacity without violating the HST and TOT thermal limits set by the operator. In order to ensure the optimal loading, the temperature predictions of the thermal models need to be accurate. A number of transformer thermal models are available in the literature. In present practice, the IEEE Clause 7 model is used by the industry to make these predictions. However, a linear regression based thermal model has been observed to be more accurate than the IEEE model. These two models have been studied in this work.

This document presents the research conducted to discriminate between reliable and unreliable models with the help of certain metrics. This was done by first eyeballing the prediction performance and then evaluating a number of mathematical metrics. Efforts were made to recognize the cause behind an unreliable model. Also research was conducted to improve the accuracy of the performance of the existing models.

A new application, described in this document, has been developed to automate the process of building thermal models for multiple transformers. These thermal models can then be used for transformer dynamic loading.
ContributorsRao, Shruti Dwarkanath (Author) / Tylavsky, Daniel J (Thesis advisor) / Holbert, Keith E. (Committee member) / Karady, George G. (Committee member) / Arizona State University (Publisher)
Created2014
154288-Thumbnail Image.png
Description
Characterization and modeling of deformation and failure in metallic materials under extreme conditions, such as the high loads and strain rates found under shock loading due to explosive detonation and high velocity-impacts, are extremely important for a wide variety of military and industrial applications. When a shock wave causes stress

Characterization and modeling of deformation and failure in metallic materials under extreme conditions, such as the high loads and strain rates found under shock loading due to explosive detonation and high velocity-impacts, are extremely important for a wide variety of military and industrial applications. When a shock wave causes stress in a material that exceeds the elastic limit, plasticity and eventually spallation occur in the material. The process of spall fracture, which in ductile materials stems from strain localization, void nucleation, growth and coalescence, can be caused by microstructural heterogeneity. The analysis of void nucleation performed from a microstructurally explicit simulation of a spall damage evolution in a multicrystalline copper indicated triple junctions as the preferred sites for incipient damage nucleation revealing 75% of them with at least two grain boundaries with misorientation angle between 20-55°. The analysis suggested the nature of the boundaries connecting at a triple junction is an indicator of their tendency to localize spall damage. The results also showed that damage propagated preferentially into one of the high angle boundaries after voids nucleate at triple junctions. Recently the Rayleigh-Taylor Instability (RTI) and the Richtmyer-Meshkov Instability (RMI) have been used to deduce dynamic material strength at very high pressures and strain rates. The RMI is used in this work since it allows using precise diagnostics such as Transient Imaging Displacement Interferometry (TIDI) due to its slower linear growth rate. The Preston-Tonks-Wallace (PTW) model is used to study the effects of dynamic strength on the behavior of samples with a fed-thru RMI, induced via direct laser drive on a perturbed surface, on stability of the shock front and the dynamic evolution of the amplitudes and velocities of the perturbation imprinted on the back (flat) surface by the perturbed shock front. Simulation results clearly showed that the amplitude of the hydrodynamic instability increases with a decrease in strength and vice versa and that the amplitude of the perturbed shock front produced by the fed-thru RMI is also affected by strength in the same way, which provides an alternative to amplitude measurements to study strength effects under dynamic conditions. Simulation results also indicate the presence of second harmonics in the surface perturbation after a certain time, which were also affected by the material strength.
ContributorsGautam, Sudrishti (Author) / Peralta, Pedro (Thesis advisor) / Oswald, Jay (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2016
155620-Thumbnail Image.png
Description
Video capture, storage, and distribution in wireless video sensor networks

(WVSNs) critically depends on the resources of the nodes forming the sensor

networks. In the era of big data, Internet of Things (IoT), and distributed

demand and solutions, there is a need for multi-dimensional data to be part of

the

Video capture, storage, and distribution in wireless video sensor networks

(WVSNs) critically depends on the resources of the nodes forming the sensor

networks. In the era of big data, Internet of Things (IoT), and distributed

demand and solutions, there is a need for multi-dimensional data to be part of

the Sensor Network data that is easily accessible and consumable by humanity as

well as machinery. Images and video are expected to become as ubiquitous as is

the scalar data in traditional sensor networks. The inception of video-streaming

over the Internet, heralded a relentless research for effective ways of

distributing video in a scalable and cost effective way. There has been novel

implementation attempts across several network layers. Due to the inherent

complications of backward compatibility and need for standardization across

network layers, there has been a refocused attention to address most of the

video distribution over the application layer. As a result, a few video

streaming solutions over the Hypertext Transfer Protocol (HTTP) have been

proposed. Most notable are Apple’s HTTP Live Streaming (HLS) and the Motion

Picture Experts Groups Dynamic Adaptive Streaming over HTTP (MPEG-DASH). These

frameworks, do not address the typical and future WVSN use cases. A highly

flexible Wireless Video Sensor Network Platform and compatible DASH (WVSNP-DASH)

are introduced. The platform's goal is to usher video as a data element that

can be integrated into traditional and non-Internet networks. A low cost,

scalable node is built from the ground up to be fully compatible with the

Internet of Things Machine to Machine (M2M) concept, as well as the ability to

be easily re-targeted to new applications in a short time. Flexi-WVSNP design

includes a multi-radio node, a middle-ware for sensor operation and

communication, a cross platform client facing data retriever/player framework,

scalable security as well as a cohesive but decoupled hardware and software

design.
ContributorsSeema, Adolph (Author) / Reisslein, Martin (Thesis advisor) / Kitchen, Jennifer (Committee member) / Seeling, Patrick (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2017
155369-Thumbnail Image.png
Description
Political party identification has an immense influence on shaping individual attitudes and processes of reasoning to the point where otherwise knowledgeable people endorse political conspiracies that support one's political in-group and simultaneously disparage an out-group. Although recent research has explored this tendency among partisans, less is known about how Independents

Political party identification has an immense influence on shaping individual attitudes and processes of reasoning to the point where otherwise knowledgeable people endorse political conspiracies that support one's political in-group and simultaneously disparage an out-group. Although recent research has explored this tendency among partisans, less is known about how Independents respond in comparison. Previous research fails to identify the Independent as a unique type of voter, but rather categorizes this group as ostensibly partisan, not a separate phenomenon to investigate. However, most Independents purport neutrality and, by recent polls, are becoming a substantial body worthy of concerted focus. Many questions arise about who Independents really are. For example, do all who identify as Independent behave in a similar manner? Are Independents ideologically different than what is represented by a partisan label? Is the Independent category a broad term for something entirely misunderstood? A thorough investigation into the greater dynamics of the political environment in the United States is an enormous undertaking, requiring a robust interdisciplinary approach beyond the focus and intent of this study. Therefore, this study begins the journey toward understanding these phenomena; do Independents, as a whole, uniformly respond to statements about political conspiracy theories? To explore these possibilities, explicit responses are bypassed to evaluate the implicit appeal of political conspiracy theories. An action dynamics (mouse-tracking) approach, a data rich method that records the response process, demonstrates Independents are not in fact a homogeneous group, but rather seem to fall into two groups: non-partisan leaning and partisan leaning. The analysis exposes that relative to the baseline and control stimuli: (1) Non-leaning Independents reveal an increased susceptibility to implicitly endorse bi-partisan directed conspiracy theories when compared to leaners. (2) Republican-leaners demonstrate a stronger susceptibility to endorse right-wing aligned conspiracy theories (against Barack Obama), similar to Republican partisans. (3) Democrat-leaners, unlike Democrat partisans, do not demonstrate any particular susceptibility to implicitly endorse either right/left-wing aligned conspiracy theories (against Barack Obama or George W. Bush). Drawing from major theories from social, political, and cognitive psychology will contribute to an understanding of these phenomena. Concluding remarks include study limitations and future directions.
ContributorsJohnson, Chelsea (Author) / Duran, Nicholas D (Thesis advisor) / Robles-Sotelo, Elias (Committee member) / Hall, Deborah (Committee member) / Arizona State University (Publisher)
Created2017