Matching Items (2)
Filtering by

Clear all filters

187809-Thumbnail Image.png
Description
The alarming decline of insect pollinators is due in part to agrochemical exposure and climate warming. This thesis focuses on understanding how exposure to a commonly used fungicide and high air temperature affect the flight behavior and physiology of the very important commercial pollinator, Apis mellifera. I found that honey

The alarming decline of insect pollinators is due in part to agrochemical exposure and climate warming. This thesis focuses on understanding how exposure to a commonly used fungicide and high air temperature affect the flight behavior and physiology of the very important commercial pollinator, Apis mellifera. I found that honey bees reared on pollen contaminated with field-realistic levels of a fungicide (Pristine®) commonly applied to almond blossoms before pollination had smaller thoraxes, possibly due to inhibition of protein digestion, plausibly reducing flight capability. By flying unloaded bees in low density air to elicit maximal performance, I found that consumption of high doses of fungicide during development inhibited maximal flight performance, but consumption of field-realistic doses did not. To understand climatic-warming effects on honey bees, I flew unloaded foragers at various air densities and temperatures to assess the effects of flight muscle temperature (29 to 44°C) on maximal aerobic metabolism. Flight metabolic rate peaked at a muscle temperature of 39°C and decreased by ~2% per degree below and ~5% per degree above this optimum. Carrying nectar loads increased flight muscle temperatures and flight metabolism of foragers flying at air temperatures of 20 or 30°C. Yet, remarkably, bees flying at 40°C were able to carry loads without heating up or increasing metabolic rate. Bees flying at 40°C increased evaporative cooling and decreased metabolic heat production to thermoregulate. High speed video revealed that bees flying at 40°C air temperature lowered their wing beat frequency while increasing stroke amplitude, increasing flight efficiency. My data also suggests that cooler bees use wing kinematic strategies that increase flight stability and maneuverability while generating excess heat that warms their flight muscle toward optimum. High water loss rates during flight likely limit foraging in dry air temperatures above 46°C, suggesting that CTmax measures of resting honey bees significantly overestimate when high air temperature will negatively impact flight and foraging.
ContributorsGlass, Jordan Robert (Author) / Harrison, Jon F. (Thesis advisor) / Denardo, Dale F. (Committee member) / Dudley, Robert (Committee member) / Fewell, Jennifer H. (Committee member) / Arizona State University (Publisher)
Created2023
161944-Thumbnail Image.png
Description
Honeybees require the use of their antennae to perceive different scents and pheromones, communicate with other members of the colony, and even detect wind vibrations, sound waves, and carbon dioxide levels. Limiting and/or removing this sense makes bees much less effective at acquiring information. However, how antennal movements might be

Honeybees require the use of their antennae to perceive different scents and pheromones, communicate with other members of the colony, and even detect wind vibrations, sound waves, and carbon dioxide levels. Limiting and/or removing this sense makes bees much less effective at acquiring information. However, how antennal movements might be important for olfaction has not been studied in detail. The focus of this work was to evaluate how restriction of antennae movements might affect a bee’s ability to detect and perceive odors. Bees were made to learn a certain odor and were then split up into a control group, a treatment group that had their antennae fixed with eicosane, and a sham treatment group that had a dot of eicosane on their heads in such a way that it would not affect antennae movements but still add the same amount of weight. Following a period of acclimation, the bees were tested with the conditioned odor, one that was perceptually similar to it, and to a dissimilar odor. Using proboscis-extension duration and latency as response measures, it became clear that both antenna fixation and sham treatments affected the conditioned behavior. However, these treatment effects did not reach statistical significance. Briefly, both fixation of antennae as well as the sham treatment reduced the discriminability of the conditioned and similar odors. Although more data can be collected to more fully evaluate the significance of the treatments, the behavior of the sham group could indicate that mechanoreceptive hairs on the head play an important role in olfaction. It is also possible that there are other factors at play, possibly induced by the fixed bees’ increased stress levels.
ContributorsHozan, Alvin Robert (Author) / Smith, Brian H (Thesis advisor) / Lei, Hong (Committee member) / Cook, Chelsea (Committee member) / Arizona State University (Publisher)
Created2021