Matching Items (2,117)
Filtering by

Clear all filters

152334-Thumbnail Image.png
Description
This study focused on investigating the ability of a polymeric-enhanced high-tenacity fabric composite called CarbonFlex to mitigate damages from multi-natural hazards, which are earthquakes and tornadoes, in wood-framed structures. Typically, wood-framed shear wall is a seismic protection system used in low-rise wood structures. It is well-known that the main energy

This study focused on investigating the ability of a polymeric-enhanced high-tenacity fabric composite called CarbonFlex to mitigate damages from multi-natural hazards, which are earthquakes and tornadoes, in wood-framed structures. Typically, wood-framed shear wall is a seismic protection system used in low-rise wood structures. It is well-known that the main energy dissipation of the system is its fasteners (nails) which are not enough to dissipate energy leading to decreasing of structure's integrity. Moreover, wood shear walls could not sustain their stiffness after experiencing moderate wall drift which made them susceptible to strong aftershocks. Therefore, CarbonFlex shear wall system was proposed to be used in the wood-framed structures. Seven full-size CarbonFlex shear walls and a CarbonFlex wrapped structures were tested. The results were compared to those of conventional wood-framed shear walls and a wood structure. The comparisons indicated that CarbonFlex specimens could sustain their strength and fully recover their initial stiffness although they experienced four percent story drift while the stiffness of the conventional structure dramatically degraded. This indicated that CarbonFlex shear wall systems provided a better seismic protection to wood-framed structures. To evaluate capability of CarbonFlex to resist impact damages from wind-borne debris in tornadoes, several debris impact tests of CarbonFlex and a carbon fiber reinforced storm shelter's wall panels were conducted. The results showed that three CarbonFlex wall panels passed the test at the highest debris impact speed and the other two passed the test at the second highest speed while the carbon fiber panel failed both impact speeds.
ContributorsDhiradhamvit, Kittinan (Author) / Attard, Thomas L (Thesis advisor) / Fafitis, Apostolos (Thesis advisor) / Neithalath, Narayanan (Committee member) / Thomas, Benjamin (Committee member) / Arizona State University (Publisher)
Created2013
153482-Thumbnail Image.png
Description
Winter storms decrease the safety of roadways as it brings ice and snow to the roads and increases accidents, delays, and travel time. Not only are personal vehicles affected, but public transportation, commercial transportation, and emergency vehicles are affected as well. Portland, Oregon, and Seattle, Washington, both suffer from mild,

Winter storms decrease the safety of roadways as it brings ice and snow to the roads and increases accidents, delays, and travel time. Not only are personal vehicles affected, but public transportation, commercial transportation, and emergency vehicles are affected as well. Portland, Oregon, and Seattle, Washington, both suffer from mild, but sometimes extreme, storms that affect the entire city. Taking a closer look at the number of crashes reported by the City of Portland and the City of Seattle, it is seen that there is an increase in percent of crashes with reported road conditions of snow and ice. Both cities appear to have nearly the same reported crash percentages. Recommendations in combating the issue of increased accidents and the disruption of the city itself include looking into communication between the climate research institution and city planners that could help with planning for better mitigation during storms, a street or gas tax, although an impact study is important to keep in mind to make sure no part of the population is at risk; and engineering revolutions such as Solar Roadways that could benefit all cities.
ContributorsHoots, Danielle (Author) / Crewe, Katherine (Thesis advisor) / Golub, Aaron (Committee member) / Brazel, Anthony (Committee member) / Arizona State University (Publisher)
Created2015
154571-Thumbnail Image.png
Description
Drawing from the fields of coastal geography, political ecology, and institutions, this dissertation uses Cape Cod, MA, as a case study, to investigate how chronic and acute climate-related coastal hazards, socio-economic characteristics, and governance and decision-making interact to produce more resilient or at-risk coastal communities. GIS was used to model

Drawing from the fields of coastal geography, political ecology, and institutions, this dissertation uses Cape Cod, MA, as a case study, to investigate how chronic and acute climate-related coastal hazards, socio-economic characteristics, and governance and decision-making interact to produce more resilient or at-risk coastal communities. GIS was used to model the impacts of sea level rise (SLR) and hurricane storm surge scenarios on natural and built infrastructure. Social, gentrification, and tourism indices were used to identify communities differentially vulnerable to coastal hazards. Semi-structured interviews with planners and decision-makers were analyzed to examine hazard mitigation planning.

The results of these assessments demonstrate there is considerable variation in coastal hazard impacts across Cape Cod towns. First, biophysical vulnerability is highly variable with the Outer Cape (e.g., Provincetown) at risk for being temporarily and/or permanently isolated from the rest of the county. In most towns, a Category 1 accounts for the majority of inundation with impacts that will be intensified by SLR. Second, gentrification in coastal communities can create new social vulnerabilities by changing economic bases and disrupting communities’ social networks making it harder to cope. Moreover, higher economic dependence on tourism can amplify towns’ vulnerability with reduced capacities to recover. Lastly, low political will is an important barrier to effective coastal hazard mitigation planning and implementation particularly given the power and independence of town government on Cape Cod. Despite this independence, collaboration will be essential for addressing the trans-boundary effects of coastal hazards and provide an opportunity for communities to leverage their limited resources for long-term hazard mitigation planning.

This research contributes to the political ecology of hazards and vulnerability research by drawing from the field of institutions, by examining how decision-making processes shape vulnerabilities and capacities to plan and implement mitigation strategies. While results from this research are specific to Cape Cod, it demonstrates a broader applicability of the “Hazards, Vulnerabilities, and Governance” framework for assessing other hazards (e.g., floods, fires, etc.). Since there is no “one-size-fits-all” approach to mitigating coastal hazards, examining vulnerabilities and decision-making at local scales is necessary to make resiliency and mitigation efforts specific to communities’ needs.
ContributorsGentile, Lauren Elyse (Author) / Bolin, Bob (Thesis advisor) / Wentz, Elizabeth (Committee member) / White, Dave (Committee member) / York, Abigail (Committee member) / Arizona State University (Publisher)
Created2016
174861-Thumbnail Image.jpg
Created1925-19-39 (uncertain)
174864-Thumbnail Image.jpg
Created1922
174868-Thumbnail Image.jpg
Created1934
174871-Thumbnail Image.jpg
Created1922
174875-Thumbnail Image.jpg
Created1921
174879-Thumbnail Image.jpg
Created1921
174883-Thumbnail Image.jpg
Created1921